Forgot password?
 Create new account
View 1798|Reply 6

[不等式] 幂指不等式链

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2019-2-13 13:45:21 |Read mode
对\(\forall a,b\in(0,1]\)
\[ \left(a+b\right)^{\frac{a+b}{2}}\leqslant\frac{\left(a+b\right)^a+\left(a+b\right)^b}{2}\leqslant a^b+b^a  \]

47

Threads

358

Posts

3014

Credits

Credits
3014

Show all posts

业余的业余 Posted at 2019-2-13 18:23:06
左边是均值不等式。右边不会

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2019-2-13 22:56:50
回复 2# 业余的业余

俺也来保持队形一下:
当 `a+b\geqslant1` 时显然 `\dfrac{(a+b)^a+(a+b)^b}2\leqslant\dfrac{(a+b)+(a+b)}2=a+b\leqslant a^b+b^a`,当 `a+b<1` 时,不会

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2019-2-13 23:20:38
原来另一种情况也是简单的:
当 `a+b<1` 时显然 `\dfrac{(a+b)^a+(a+b)^b}2<\dfrac{1^a+1^b}2=1`,而 `a^b+b^a>1` 是已知结论,所以不等式成立!

47

Threads

358

Posts

3014

Credits

Credits
3014

Show all posts

业余的业余 Posted at 2019-2-15 06:23:30
回复 4# kuing

试了下,不得其法,请问$ a^b+b^a>1 $ 怎样证明?

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2019-2-15 07:29:07
回复 5# 业余的业余

参考下,帖子地址忘了记下来了,好在证明过程在.
$type 四个幂指数不等式的证明以及否定.doc (235.5 KB, Downloads: 6583)
$type 指数不等式n=3,4-5修改000.doc (283.5 KB, Downloads: 6646)
共同点是就Bernoulli不等式一招,很容易让人产生这样想法,就这够了?

47

Threads

358

Posts

3014

Credits

Credits
3014

Show all posts

业余的业余 Posted at 2019-2-15 08:12:18
回复  业余的业余

参考下,帖子地址忘了记下来了,好在证明过程在.

共同点是就Bernoulli不等式一招, ...
realnumber 发表于 2019-2-15 07:29

谢谢!伯努利不等式只粗粗见过一两次,确实陌生得很。 不等式门道深如海,让人望而生畏

手机版Mobile version|Leisure Math Forum

2025-4-21 14:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list