伯努利不等式有一个有趣的推广:Bernoulli's inequality by DS Mitrinović · 1993
2. Let
\[
F(k, a, x)=1+a x+C(a, 2) x^2+\cdots+C(a, k) x^k
\]
be the $k$-th partial sum of binomial series for $(1+x)^a$, where $x>-1$. Then, if the first omitted term is
1) positive, then $(1+x)^a>F(k, a, x)$,
2) zero, then $(1+x)^a=F(k, a, x)$,
3) negative, then $(1+x)^a<F(k, a, x)$.