|
战巡
Posted 2016-8-11 00:30
回复 3# dim
对$\ln(\Gamma(x))$傅里叶展开有当$0<x<1$时:
\[\ln(\Gamma(x))=(\frac{1}{2}-x)(\gamma+\ln(2))+(1-x)\ln(\pi)-\frac{1}{2}\ln(\sin(\pi x))+\frac{1}{\pi}\sum_{k=1}^\infty\frac{\sin(2\pi kx)\ln(k)}{k}\]
\[\int_0^{\frac{1}{2}}\ln(\Gamma(x))dx=\frac{1}{8}(\gamma+\ln(8)+3\ln(\pi))+\sum_{k=1}^\infty\frac{\ln(2k-1)}{(2k-1)^2\pi^2}\]
其中
\[\sum_{k=1}^\infty\frac{\ln(2k-1)}{(2k-1)^2}=\sum_{k=1}^\infty\frac{\ln(k)}{k^2}-\sum_{k=1}^\infty\frac{\ln(2k)}{(2k)^2}=\sum_{k=1}^\infty\frac{\ln(k)}{k^2}-\frac{1}{4}\sum_{k=1}^\infty\frac{\ln(k)+\ln(2)}{k^2}\]
\[=\frac{3}{4}\sum_{k=1}^\infty\frac{\ln(k)}{k^2}-\frac{\ln(2)\pi^2}{24}\]
而参见forum.php?mod=viewthread&tid=3980&highlight=,有
\[\sum_{k=1}^\infty\frac{\ln(k)}{k^2}=-\zeta'(2)=\frac{\pi^2}{6}(12\ln(A)-\gamma-\ln(2)-\ln(\pi))\]
带入化简就有上面的最后结果 |
|