Forgot password?
 Register account
View 1385|Reply 4

求极限

[Copy link]

16

Threads

25

Posts

321

Credits

Credits
321

Show all posts

dim Posted 2016-8-8 00:38 |Read mode
Last edited by hbghlyj 2025-5-16 22:35证明$$\lim_{n \to+\infty}\left(\sum_{k=1}^n k \ln k-\frac{n^2 \ln n}{2}+\frac{n^2}{4}-\frac{n \ln n}{2}-\frac{\ln n}{12}\right)=\frac{2}{3}\left(\int_0^{1 / 2} \ln \Gamma(x) d x-\frac{5 \ln 2}{24}-\frac{\ln \pi}{4}\right)$$

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2016-8-8 14:30
回复 1# dim


\[\sum_{k=1}^n k\ln(k)=\ln(\prod_{k=1}^nk^k)\]  
其中$\prod_{k=1}^nk^k$称为超阶乘,有
\[\prod_{k=1}^nk^k\sim An^{\frac{6n^2+6n+1}{12}}e^{-\frac{n^2}{4}}\]
其中$A\approx 1.282427$为格莱舍常数(Glaisher–Kinkelin Constant)

后面取对数神马的自己算吧
顺便告诉你,有
\[\int_0^{\frac{1}{2}}\ln(\Gamma(x))dx=\frac{3}{2}\ln(A)+\frac{5}{24}\ln(2)+\frac{1}{4}\ln(\pi)\]

16

Threads

25

Posts

321

Credits

Credits
321

Show all posts

 Author| dim Posted 2016-8-8 23:52
回复 2# 战巡


    谢谢大神!其实我想知道的是‘‘顺便告诉你’’后面那些怎么得到的。。。

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2016-8-11 00:30
回复 3# dim


对$\ln(\Gamma(x))$傅里叶展开有当$0<x<1$时:
\[\ln(\Gamma(x))=(\frac{1}{2}-x)(\gamma+\ln(2))+(1-x)\ln(\pi)-\frac{1}{2}\ln(\sin(\pi x))+\frac{1}{\pi}\sum_{k=1}^\infty\frac{\sin(2\pi kx)\ln(k)}{k}\]
\[\int_0^{\frac{1}{2}}\ln(\Gamma(x))dx=\frac{1}{8}(\gamma+\ln(8)+3\ln(\pi))+\sum_{k=1}^\infty\frac{\ln(2k-1)}{(2k-1)^2\pi^2}\]

其中
\[\sum_{k=1}^\infty\frac{\ln(2k-1)}{(2k-1)^2}=\sum_{k=1}^\infty\frac{\ln(k)}{k^2}-\sum_{k=1}^\infty\frac{\ln(2k)}{(2k)^2}=\sum_{k=1}^\infty\frac{\ln(k)}{k^2}-\frac{1}{4}\sum_{k=1}^\infty\frac{\ln(k)+\ln(2)}{k^2}\]
\[=\frac{3}{4}\sum_{k=1}^\infty\frac{\ln(k)}{k^2}-\frac{\ln(2)\pi^2}{24}\]

而参见forum.php?mod=viewthread&tid=3980&highlight=,有
\[\sum_{k=1}^\infty\frac{\ln(k)}{k^2}=-\zeta'(2)=\frac{\pi^2}{6}(12\ln(A)-\gamma-\ln(2)-\ln(\pi))\]

带入化简就有上面的最后结果

16

Threads

25

Posts

321

Credits

Credits
321

Show all posts

 Author| dim Posted 2016-8-12 22:09
回复 4# 战巡


    谢谢大神了!

Mobile version|Discuz Math Forum

2025-6-5 07:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit