Forgot password?
 Register account
View 1227|Reply 2

求证一道极限

[Copy link]

16

Threads

25

Posts

321

Credits

Credits
321

Show all posts

dim Posted 2016-4-11 00:25 |Read mode
Last edited by hbghlyj 2025-5-16 22:42\[
\lim_{n \to \infty} \left( n \int_0^1 (1-x)^n (\ln x)^2 \,dx - (\ln n)^2 - 2\gamma \ln n \right) = \gamma^2 + \frac{\pi^2}{6}
\]

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2016-4-11 03:46
回复 1# dim


首先把那个积分搞掉
考虑这个东西
\[B(m,n+1)=\int_0^1x^{m-1}(1-x)^ndx\]
\[\frac{\partial^2}{\partial m^2}B(m,n+1)=\int_0^1x^{m-1}(1-x)^n\ln^2(x)dx\]
\[\int_0^1(1-x)^n\ln^2(x)dx=\frac{\partial^2}{\partial m^2}B(m,n+1)|_{m=1}\]
另一方面
\[\frac{\partial^2}{\partial m^2}B(m,n+1)=\frac{\partial^2}{\partial m^2}\frac{\Gamma(m)\Gamma(n+1)}{\Gamma(m+n+1)}\]
\[=\frac{\Gamma(m)\Gamma(n+1)}{\Gamma(m+n+1)}·[(\psi(m)-\psi(m+n+1))^2+(\psi'(m)-\psi'(m+n+1))]\]
代入$m=1$可得
\[\int_0^1(1-x)^n\ln^2(x)dx=\frac{1}{n+1}[(\sum_{i=1}^{n+1}\frac{1}{i})^2+\frac{\pi^2}{6}-\psi'(n+2)]\]

\[\lim_{n\to \infty}[n\int_0^1(1-x)^n\ln^2(x)dx-\ln^2(n)-2\ln(n)\gamma]=\lim_{n\to\infty}[(\sum_{i=1}^{n+1}\frac{1}{i})^2+\frac{\pi^2}{6}-\psi'(n+2)-\ln^2(n)-2\ln(n)\gamma]\]
注意到$\lim_{n\to\infty}\psi'(n+2)=0$
\[=\lim_{n\to\infty}[(\ln(n)+\gamma)^2+\frac{\pi^2}{6}-\psi'(n+2)-\ln^2(n)-2\ln(n)\gamma]=\frac{\pi^2}{6}+\gamma^2\]

16

Threads

25

Posts

321

Credits

Credits
321

Show all posts

 Author| dim Posted 2016-4-11 17:51
回复 2# 战巡

懂了,非常感谢!

Mobile version|Discuz Math Forum

2025-6-5 02:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit