Forgot password?
 Register account
View 1619|Reply 4

请教一道积分

[Copy link]

16

Threads

25

Posts

321

Credits

Credits
321

Show all posts

dim Posted 2016-3-26 18:04 |Read mode
Last edited by hbghlyj 2025-5-16 22:37\[
\int_{0}^{\infty} \frac{\ln(x)}{\sqrt{x}} e^{-x} \,dx = -\sqrt{\pi} (\gamma + \ln(4))
\]

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2016-3-27 04:10
回复 1# dim


注意到
\[\Gamma'(x)=\frac{\partial}{\partial x}\int_0^{+\infty}t^{x-1}e^{-t}dt=\int_0^{+\infty}t^{x-1}\ln(x)e^{-t}dt\]

\[\int_0^{+\infty}x^{-\frac{1}{2}}\ln(x)e^{-x}dx=\Gamma'(\frac{1}{2})=\psi(\frac{1}{2})\Gamma(\frac{1}{2})=\sqrt{\pi}\psi(\frac{1}{2})\]
其中$\psi(x)$为双伽马函数,有
\[\psi(x)=\frac{\Gamma'(x)}{\Gamma(x)}\]
而双伽马函数有如下性质
\[\psi(x+1)=-\gamma+\int_0^1\frac{1-t^x}{1-t}dt\]
\[\psi(\frac{1}{2})=-\gamma+\int_0^1\frac{1-t^{-\frac{1}{2}}}{1-t}dt=-\gamma-2\ln(1+\sqrt{t})|_0^1=-\gamma-\ln(4)\]
\[原式=\sqrt{\pi}\psi(\frac{1}{2})=-\sqrt{\pi}(\gamma+\ln(4))\]

16

Threads

25

Posts

321

Credits

Credits
321

Show all posts

 Author| dim Posted 2016-3-27 10:59
回复 2# 战巡

    大神,那个性质又该怎么证明呢?谢谢了!

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2016-3-27 16:39
Last edited by 战巡 2016-3-27 16:51回复 3# dim


这个可是双伽马的经典性质,详细内容你最好找本《特殊函数概论》来看,我这里只能简略的给你推一下

显然
\[\psi(x)=\frac{\Gamma'(x)}{\Gamma(x)}=\frac{d}{dx}\ln(\Gamma(x))\]
我们知道对$\Gamma(x)$有$\Gamma(x+1)=x\Gamma(x)$
于是两边取对数并导数得到
\[\psi(x+1)=\frac{1}{x}+\psi(x)\]
可以推出,对任意正整数$n$,有
\[\psi(x+n)=\psi(x)+\sum_{k=0}^{n-1}\frac{1}{x+k}=\psi(x)+\int_0^1\frac{t^{x-1}-t^{x+n-1}}{1-t}dt\]
换成$x+1$有
\[\psi(x+1+n)=\psi(x+1)+\int_0^1\frac{t^{x}-t^{x+n}}{1-t}dt\]
又有
\[\psi([x]+1+n)=\psi(1)+\int_0^1\frac{1-t^{[x]+n}}{1-t}dt\]
\[\psi([x+1]+1+n)=\psi(1)+\int_0^1\frac{1-t^{[x+1]+n}}{1-t}dt\]
其中$[x]$为下取整函数
由于显然$\psi(x)$在$x>1$时是增函数,有
\[\psi([x]+1+n)\le\psi(x+1+n)\le\psi([x+1]+1+n)\]
\[\psi(1)+\int_0^1\frac{1-t^{[x]+n}}{1-t}dt\le\psi(x+1)+\int_0^1\frac{t^{x}-t^{x+n}}{1-t}dt\le\psi(1)+\int_0^1\frac{1-t^{[x+1]+n}}{1-t}dt\]
注意这里$0<t<1$,取极限$n\to +\infty$有
\[\psi(1)+\int_0^1\frac{1}{1-t}dt\le\psi(x+1)+\int_0^1\frac{t^x}{1-t}dt\le\psi(1)+\int_0^1\frac{1}{1-t}dt\]
即有
\[\psi(1)+\int_0^1\frac{1}{1-t}dt=\psi(x+1)+\int_0^1\frac{t^x}{1-t}dt\]
\[\psi(x+1)=\psi(1)+\int_0^1\frac{1-t^x}{1-t}dt\]
至于为什么$\psi(1)=-\gamma$,参见forum.php?mod=viewthread&tid=3796&extra=page=1

16

Threads

25

Posts

321

Credits

Credits
321

Show all posts

 Author| dim Posted 2016-3-27 23:20
回复 4# 战巡

懂了,感谢!不过$\int_{0}^1\frac{1}{1-t}dt$是发散的,这样写是不是不太严谨?可能作差之后再取极限会更好?

Mobile version|Discuz Math Forum

2025-6-5 18:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit