Forgot password?
 Create new account
View 2121|Reply 7

[不等式] 设$a>b>1$,证明$a^{b^a}>b^{a^b}$

[Copy link]

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

天音 Posted at 2016-12-26 16:45:10 |Read mode
如题

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2016-12-26 17:29:25
原不等式等价于
\[\frac{\ln a}{\ln b}>\frac{a^b}{b^a}.\]

若 $b^a\geqslant a^b$,则
\[\frac{\ln a}{\ln b}>1\geqslant \frac{a^b}{b^a};\]

若 $b^a<a^b$,对其取对数得
\[\frac{\ln a}{\ln b}>\frac ab,\]
故只需证
\[\frac ab>\frac{a^b}{b^a},\]
令 $a=1+x$, $b=1+y$, $x>y>0$,代入上式可整理为
\[(1+x)^{1/x}<(1+y)^{1/y},\]
熟知 $(1+x)^{1/x}$ 递减,故上式成立,即得证。

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2016-12-26 18:13:27
回复 2# kuing


    鼓掌....

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

 Author| 天音 Posted at 2016-12-26 22:46:52
回复 2# kuing

厉害!

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2019-7-14 09:27:41
Mark一下
蒲和平《大学生数学竞赛教程》电子工业出版社
P173  综合题4 第8题

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2019-7-16 22:30:43
回复 5# 青青子衿

有参考答案吗?

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2019-7-16 23:41:57
blog14.png
妙不可言,不明其妙,不着一字,各释其妙!

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2019-7-17 00:02:30
回复 7# 其妙

噢,原来下限还能小到 0,多谢提供

手机版Mobile version|Leisure Math Forum

2025-4-21 01:29 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list