Forgot password?
 Register account
View 2275|Reply 7

[不等式] 设$a>b>1$,证明$a^{b^a}>b^{a^b}$

[Copy link]

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

天音 Posted 2016-12-26 16:45 |Read mode
如题

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2016-12-26 17:29
原不等式等价于
\[\frac{\ln a}{\ln b}>\frac{a^b}{b^a}.\]

若 $b^a\geqslant a^b$,则
\[\frac{\ln a}{\ln b}>1\geqslant \frac{a^b}{b^a};\]

若 $b^a<a^b$,对其取对数得
\[\frac{\ln a}{\ln b}>\frac ab,\]
故只需证
\[\frac ab>\frac{a^b}{b^a},\]
令 $a=1+x$, $b=1+y$, $x>y>0$,代入上式可整理为
\[(1+x)^{1/x}<(1+y)^{1/y},\]
熟知 $(1+x)^{1/x}$ 递减,故上式成立,即得证。

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2016-12-26 18:13
回复 2# kuing


    鼓掌....

32

Threads

55

Posts

469

Credits

Credits
469

Show all posts

 Author| 天音 Posted 2016-12-26 22:46
回复 2# kuing

厉害!

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

青青子衿 Posted 2019-7-14 09:27
Mark一下
蒲和平《大学生数学竞赛教程》电子工业出版社
P173  综合题4 第8题

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2019-7-16 22:30
回复 5# 青青子衿

有参考答案吗?

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2019-7-16 23:41
blog14.png
妙不可言,不明其妙,不着一字,各释其妙!

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2019-7-17 00:02
回复 7# 其妙

噢,原来下限还能小到 0,多谢提供

Mobile version|Discuz Math Forum

2025-6-5 07:42 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit