|
与《函数f(x)=x−aexf(x)=x−aex的两个零点商与和问题》类似的来了。
题如下:
已知函数\(f\left( x \right) = x\ln x,e\)为自然对数的底数.
(1)求曲线\(y = f\left( x \right)\)在\(x = {e^{ - 2}}\)处的切线方程;
(2)关于\(x\)的不等式\(f\left( x \right) \ge \lambda \left( {x - 1} \right)\)在\(\left( {0, + \infty } \right)\)上恒成立,求实数\(\lambda \)的值;
(3)关于\(x\) = a\)的方程\(f\left( x \right) = a\)有两个实根\({x_1},{x_2}\),求证:\(\left| {{x_1} - {x_2}} \right| < 2a + 1 + {e^{ - 2}}\). |
|