Forgot password?
 Create new account
View 2248|Reply 7

[函数] $\forall a\exists b$ 和 $\exists b\forall a$

[Copy link]

81

Threads

170

Posts

1660

Credits

Credits
1660

Show all posts

APPSYZY Posted at 2018-9-6 18:14:04 |Read mode
题一:若对任意$x\in[1,4]$,存在$a\inR$,使得$\abs{x^2+ax+b}\leqslant2x\,\,(b>0)$恒成立,则实数$b$的最大值为____.
题二:若存在$a\inR$,使得对任意$x\in[1,4]$,$\abs{x^2+ax+b}\leqslant2x\,\,(b>0)$恒成立,则实数$b$的最大值为____.

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2018-9-6 18:42:44
Last edited by isee at 2018-9-6 19:16:00回复 1# APPSYZY

一会游客看到了,施展他的平移大法~

===


(1)我的笨方法是分参,粗算是$9$,切点是$(3,-15)$。

(2)除了顺序不了一样,和(1)有什么不同?

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2018-9-6 23:11:12
回复 2# isee

分参不是挺好的么,即\[x+\frac bx+2\geqslant -a\geqslant x+\frac bx-2,\]然后分 `b` 与 `16` 的大小讨论一下即可得到最大是 9。

81

Threads

170

Posts

1660

Credits

Credits
1660

Show all posts

 Author| APPSYZY Posted at 2018-9-6 23:41:04
回复 2# isee
一般情况下,$\forall a$和$\exists b$交换,似乎是不等价的,不知在这道题里,交换顺序会不会影响答案..

81

Threads

170

Posts

1660

Credits

Credits
1660

Show all posts

 Author| APPSYZY Posted at 2018-9-6 23:43:17
题一中$a$与$x$的取值有关,而题二中$a$与$x$的取值无关

15

Threads

948

Posts

110K

Credits

Credits
12412

Show all posts

色k Posted at 2018-9-6 23:45:27
回复 5# APPSYZY

如果是这样理解的话,那题一的b就可以任取了

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2018-9-8 19:21:17
把问题搞得更简单点,要不先来看交换任意存在
题一:若对任意$x\in[1,4]$,存在$a\in R$,使得$ax+b\leqslant2x(b>0)$恒成立,则实数$b$的取值范围.
题二:若存在$a\in R$,对任意$x\in[1,4]$,使得$ax+b\leqslant2x(b>0)$恒成立,则实数$b$的取值范围.

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted at 2018-10-25 12:36:23
第二题: j2.gif
当b最大时,抛物线过点(1,2),且与直线y=-2x相切。

手机版Mobile version|Leisure Math Forum

2025-4-21 19:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list