Forgot password?
 Create new account
View 1694|Reply 3

[几何] 类抛物线的轨迹极限

[Copy link]

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2020-5-20 10:13:59 |Read mode
Last edited by hbghlyj at 2020-5-20 17:03:00给定点P,圆O,QR在圆O上运动,QR=OP,QO交RP于S,P趋于O时,S的轨迹的极限是什么?(已知不是抛物线)
当PO减小时曲线的第二支逐渐远离,当P=O时曲线只有一支
1.png 2.png
$type 类抛物线2.gsp (4.13 KB, Downloads: 3382) 新建位图图像.gif

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2020-5-20 12:41:02
Last edited by hbghlyj at 2020-5-20 16:43:00P(p,0),圆O的半径为1,则S的轨迹方程为$(4-p^2)x^4+(4-2p^2)x^2y^2-p^2y^4+(-8p+2p^3)x^3+(-4+2p^2)\sqrt{4-p^2}x^2y+(-8p+2p^3)xy^2+(-4+2p^2)\sqrt{4-p^2}y^3+(4p^2-p^4)x^2+(4p-2p^3)\sqrt{4-p^2}xy+(2-p^2)^2y^2=0$
代入p=0,得\[x^4+x^2 y^2-2 x^2 y-2 y^3+y^2=0\]
用GrafEq画出来如下:
QQ图片20200518065647.jpg

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2020-5-20 13:37:30
直接算极限的好了,不妨设 `Q(\cos\theta,\sin\theta)`, `S(x,y)`,分两种情况:

(1)当 `Q` 像 1# 的图那样位于 `x` 轴下方,即 `\theta\in(-\pi,0)` 时,此时 `S` 位于 `QO` 的延长线上,极限时满足 `SO:SQ=-\sin\theta`(特别地当 `Q(0,-1)` 时 `S` 为 `y` 轴正方向上的无穷远点),于是
\[\led
\frac x{x-\cos\theta}&=-\sin\theta,\\
\frac y{y-\sin\theta}&=-\sin\theta,
\endled
\riff
\led
x&=\frac{\sin\theta\cos\theta}{1+\sin\theta},\\
y&=\frac{\sin^2\theta}{1+\sin\theta};
\endled\]
(2)当 `Q` 不在 `x` 轴下方,即 `\theta\in[0,\pi]` 时,此时 `S` 位于线段 `QO` 上,极限时满足 `OS:SQ=\sin\theta`,于是
\[\led
\frac{-x}{x-\cos\theta}&=\sin\theta,\\
\frac{-y}{y-\sin\theta}&=\sin\theta,
\endled\]这和(1)的方程是一样的。

综上所述,`S` 的参数方程就是
\[\led
x&=\frac{\sin\theta\cos\theta}{1+\sin\theta},\\
y&=\frac{\sin^2\theta}{1+\sin\theta}.
\endled\]

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2020-5-20 15:21:10
Last edited by hbghlyj at 2020-5-21 17:12:00取出最高次项,曲线与无穷远线的交点满足\[\left(4-p^2\right) x^4-2x^2  y^2\left( p^2 -2\right)-p^2 y^4=0\]即\[(x^2 + y^2) ((p^2-4) x^2 + p^2 y^2 )=0\]所以曲线有一个环形分支,且p=0时有一个抛物线型分支,0<p<2时有两支,p=2是圆,p>2时无轨迹

手机版Mobile version|Leisure Math Forum

2025-4-21 01:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list