|
发maven的证明,我没仔细看过这个证明。他定义了norm命令来表示范数。
$\newcommand{\norm}[1]{\left\lVert#1\right\rVert}$
对任意的$x = (\xi_1,\cdots,\xi_n,0,0,\cdots) \in c_0$,给定$y = (\eta_1,\cdots,\eta_n,\cdots) \in \ell^1$,则
\[\sum_{k=1}^{\infty}\abs{\eta_k\xi_k} = \le \sum_{k=1}^{\infty}\abs{\eta_k}\norm{x}_{\infty} = \norm{x}_{\infty}\norm{y}_1 < \infty\]
定义映射$\varphi: c_0 \to \mathbb{K}$为
\[\varphi(x) = \sum_{k=1}^{\infty}\abs{\eta_k\xi_k}, \qquad\qquad x = (\xi_1,\cdots,\xi_n,0,0,\cdots) \in c_0\]
显然$\varphi$是线性映射,而$\abs{\varphi(x)} \le \norm{x}_{\infty}\norm{y}_1$,所以$\norm{\varphi} \le \norm{y}_1$(1),于是$\varphi$是有界线性泛函,因此$\varphi \in c_0^*$。
设
\[
\delta_k =
\begin{cases}
\frac{\abs{\eta_k}}{\eta_k} & \eta_k \neq 0\\
0 & \eta_k = 0
\end{cases}
\]
则$\delta_k\eta_k = \abs{\eta_k}$,且对任意的正整数$k$都有$\abs{\delta_k} \le 1$。设$u_n = (\delta_1,\delta_2,\cdots,\delta_n,0,0,\cdots)$,显然$u_n \in c_0$且$\norm{u_n}_{\infty} \le 1$,而
\[\varphi(u_n) = \sum_{k=1}^{n}\eta_k\delta_k = \sum_{k=1}^{n}\abs{\eta_k}\]
令$n \to \infty$,由上式有
\[\norm{y}_1 = \sum_{k=1}^{\infty}\abs{\eta_k} = \lim_{n \to \infty}\varphi(u_n) \le \lim_{n \to \infty}\norm{\varphi}\norm{u_n}_{\infty} \le \lim_{n \to \infty}\norm{\varphi} = \norm{\varphi}(2)\]
由(1)(2)知$\norm{\varphi} = \norm{y}_1$,即对每个$y \in \ell^1$都存在$\varphi \in c_0^*$与之对应,使得$\norm{\varphi} = \norm{y_1}$,令$F: \ell^1 \to c_0^*, y \mapsto \varphi$,其中
\[\varphi(x) = \sum_{k=1}^{\infty}\eta_k\xi_k, \qquad\qquad x = (\xi_1,\cdots,\xi_n,0,0,\cdots) \in c_0\]
显然$F$是线性算子,且$\norm{F} = \norm{\varphi} = \norm{y}_1$,所以$F$是等距映射。下面证明$F$是满射。
对任意的$g \in c_0^*$,对于基底$(e_1,\cdots,e_n,0,0,\cdots) \in c_0$,设$g(e_k) = \eta_k$。令$u_n = (\delta_1,\cdots,\delta_n,0,0,\cdots) \in c_0$,则$\norm{u_n}_{\infty} \le 1$,且
\[g(u_n) = \sum_{k=1}^{n}\delta_kg(e_n) = \sum_{k=1}^{n}\delta_k\eta_k = \sum_{k=1}^{n}\abs{\eta_k}\]
所以对所有的$n$都有
\[\sum_{k=1}^{n}\abs{\eta_k} = g(u_n) = \abs{g(u_n)} \le \norm{g}\norm{u_n} \le \norm{g} < \infty\]
令$n \to \infty$即
\[\sum_{k=1}^{\infty}\abs{\eta_k} < \infty\]
所以$y = (\eta_1,\cdots,\eta_n,\cdots) \in \ell^1$。对任意的$x = (\xi_1,\cdots,\xi_m,0,0,\cdots) \in c_0$,令$x_n = (\xi_1,\cdots,\xi_n,0,0,\cdots)$,即$x_n$只取$x$的前$n$个分量,其余分量为零。显然$x_n \in c_0$,而$\norm{x-x_n}_{\infty} = \sup_{k > n}\abs{\xi_k}$,注意$x \in c_0$,因此当$n \to \infty$时$\norm{x-x_n}_{\infty} \to 0$,所以$x_n \to x$,由于$g$是有界线性泛函,因此$g$是连续的,所以$g(x_n) \to g(x)$,于是
\[g(x) = \lim_{n \to \infty}g(x_n) = \lim_{n \to \infty}\sum_{k=1}^{n}\xi_kg(e_k) = \lim_{n \to \infty}\sum_{k=1}^{n}\xi_k\eta_k = \sum_{k=1}^{\infty}\xi_k\eta_k = \varphi(x)\]
由$x$的任意性知$g = \varphi = F(y)$,由$g$的任意性知,对每个$g \in c_0^*$都存在$y \in \ell^1$使得$g = F(y)$,所以$F$是满射。结合$F$是等距映射,所以$F: \ell^1 \to c_0^*$是等距同构映射,因此$c_0^* = \ell^1$。 |
|