Forgot password
 Register account
View 247|Reply 1

[分析/方程] spectral radius收敛性

[Copy link]

3211

Threads

7832

Posts

52

Reputation

Show all posts

hbghlyj posted 2023-9-16 19:15 |Read mode
Theorem 8.5.上方有一段话:
Indeed, one can show that ‖Tj1/j converges as j → ∞
没有给出证明?哪里有证明呢

48

Threads

771

Posts

93

Reputation

Show all posts

Czhang271828 posted 2023-9-18 10:28
结果就是谱半径 $r(T)$.

一方面, 任意 $r(T)\leq \|T\|$, 从而
\[
r(T)=\sqrt[n]{r(T^n)}\leq \|T^n\|^{1/n}.
\]
因此 $r(T)\leq \lim\inf_{n\to \infty} \|T^n\|^{1/n}$.

另一方面, 对任意 $|z|>r(T)$ 总有 Laurent 展开
\[
(z1-T)^{-1}=\sum_{n\geq 0} z^{-n-1}T^n.
\]
上式在无穷远处收敛, 故有
\[
\limsup_{n\to\infty}\|z^{-n-1}T^n\|\leq 1.
\]
结合 $|z|>r(T)$ 可知 $r(T)\geq \limsup_{n\to\infty}\|T^n\|^{1/n}$.

综上, $\|T^n\|^{1/n}\to r(T)$.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 06:23 GMT+8

Powered by Discuz!

Processed in 0.013937 seconds, 27 queries