Forgot password?
 Create new account
View 124|Reply 1

spectral radius收敛性

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-9-16 19:15:14 |Read mode
Theorem 8.5.上方有一段话:
Indeed, one can show that ‖Tj1/j converges as j → ∞

没有给出证明?哪里有证明呢

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-9-18 10:28:24
结果就是谱半径 $r(T)$.

一方面, 任意 $r(T)\leq \|T\|$, 从而
\[
r(T)=\sqrt[n]{r(T^n)}\leq \|T^n\|^{1/n}.
\]
因此 $r(T)\leq \lim\inf_{n\to \infty} \|T^n\|^{1/n}$.

另一方面, 对任意 $|z|>r(T)$ 总有 Laurent 展开
\[
(z1-T)^{-1}=\sum_{n\geq 0} z^{-n-1}T^n.
\]
上式在无穷远处收敛, 故有
\[
\limsup_{n\to\infty}\|z^{-n-1}T^n\|\leq 1.
\]
结合 $|z|>r(T)$ 可知 $r(T)\geq \limsup_{n\to\infty}\|T^n\|^{1/n}$.

综上, $\|T^n\|^{1/n}\to r(T)$.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:28 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list