Forgot password?
 Create new account
View 116|Reply 2

[数论] $y^2+1=2 x^4$的正整数解为 $(1,1),(239,13)$

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2024-12-18 00:22:41 |Read mode
如何证明 $y^2+1=2 x^4$的正整数解为 $(1,1),(239,13)$
people.math.wisc.edu/~ellenberg/MCAV.pdf
Another interesting case arises from the elliptic curve
\[
y^2+1=2 x^4
\]
whose integral points are related to the problem of expressing $\pi$ as a sum of rational arctangents [26,§A.12] In particular, the point $(13,239)$ corresponds to Machin's formula
\[
\pi / 4=4 \arctan (1 / 5)-\arctan (1 / 239)
\]

有很大的解$(239,13)$是因为存在一个weight-2 cuspform in level 1024 whose mod-5 Galois representation is reducible

Related collections:

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-18 00:23:38
hbghlyj 发表于 2024-12-17 16:22
如何证明 $y^2+1=2 x^4$的正整数解为 $(1,1),(239,13)$

1942年的Ljunggren的原证明很复杂

这里有一个最新的初等证明:An Elementary Proof for Ljunggren Equation (2017)

这里也有一个原证明的简化证明:Simplifying the Solution of Ljunggren's Equation (1991)

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2025-1-13 17:11:49
在论文中,第 2 页底部声称,如果 $(c,b,13k)$ 是勾股数组,则 $b/c$ 要么是 $5/12$,要么是 $12/5$。为什么

手机版Mobile version|Leisure Math Forum

2025-4-20 21:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list