Forgot password
 Register account
View 106|Reply 17

[不等式] 求一个有限制条件的分式的最小值

[Copy link]

420

Threads

910

Posts

0

Reputation

Show all posts

lemondian posted 2025-7-2 18:25 |Read mode
对任意满足$1\leqslant x\leqslant y\leqslant z\leqslant 4$的实数$x,y,z$,记$f=\dfrac{(1+x)(x+y)(y+z)(z+4)}{xyz}$,求$f$的最小值。

0

Threads

3

Posts

1

Reputation

Show all posts

老司機 posted 2025-7-2 18:44 from mobile
$f=\dfrac{(1+x)(x+y)(y+z)(z+4)}{xyz}$
$ \geqslant \dfrac{(\sqrt[4]{1*x*y*z}+\sqrt[4]{x*y*z*4})^4}{xyz}$
$= (1+\sqrt[4]{4})^4 $  

Comment

请问:分子如何来的?没看懂哩  posted 2025-7-2 19:08

0

Threads

3

Posts

1

Reputation

Show all posts

老司機 posted 2025-7-2 21:46
lemondian 点评
请问:分子如何来的?没看懂哩
IMG_0023.jpeg

Comment

两次柯西么?  posted 2025-7-3 09:07
对,可以理解为先两次 Cauchy 后,再用一次  posted 2025-7-4 11:20
@isee 你怎么不告诉他 Carlson 不等式,要不然下次题目改成 5 个括号他还是不会的。  posted 2025-7-5 03:08
不过我也是有点心灰意冷,楼主在论坛这么多年,连这些常用不等式都还没掌握,唉……  posted 2025-7-5 03:09
是不太会用这个Carlson 不等式,很少用哩
另外:郝尔德不等式与Carlson 不等式有什么联系与区别呢?  posted 2025-7-5 10:57
哈哈哈 @kuing  posted 2025-7-5 14:09

420

Threads

910

Posts

0

Reputation

Show all posts

original poster lemondian posted 2025-7-5 10:59
我用两次柯西+均值;或者用三次柯西做出来了,不过没有用Carlson 不等式或者郝尔德不等式简单

677

Threads

110K

Posts

216

Reputation

Show all posts

kuing posted 2025-7-5 13:36
lemondian 点评
是不太会用这个Carlson 不等式,很少用哩
另外:郝尔德不等式与Carlson 不等式有什么联系与区别呢?
forum.php?mod=viewthread&tid=4096 第3节

记忆方法:forum.php?mod=redirect&goto=findpost& … =41616&ptid=8290

Comment

这种形式自从你写出来,只看了一眼,就完全记住了,虽然过了这么久,还是感谢  posted 2025-7-5 14:07

766

Threads

4686

Posts

27

Reputation

Show all posts

isee posted 2025-7-5 14:34
知乎也有这个问题.





依提问者思路,可以形式上写为相对比较清晰的
\begin{align*}
f&=\frac{(1+x)(x+y)(y+z)(z+4)}{xyz}\\
&=\left(1+x\right)\left(1+\frac yx\right)\left(1+\frac zy\right)\left(1+\frac4z\right)\\
&\geqslant \left(1+\sqrt[4]{x\cdot \frac yx\cdot \frac zy\cdot\frac 4z}\right)^4\\
&=\left(1+\sqrt 2\right)^4,
\end{align*}
当且仅当 $x=\frac{y}{x}=\frac{z}{y}=\frac{4}{z}$ 即 $x=2^{\frac12}$ , $y=2$ , $z=2^{\frac32}$ 时取得等号.

84

Threads

2338

Posts

4

Reputation

Show all posts

其妙 posted 2025-7-6 15:42
Last edited by hbghlyj 2025-7-6 15:53昨天9点钟,不等式研究欣赏群里的褚小光老师的证明:
由赫尔德不等式得
\[
f(x, y, z)=\frac{(1+x)(x+y)(y+z)(z+4)}{x y z} \geq \frac{(\sqrt[4]{x y z}+\sqrt[4]{4 x y z})^4}{x y z}=(1+\sqrt{2})^4
\]
当 $x=\sqrt{2}, y=2, z=2 \sqrt{2}$ 时 $f(x, y, z)$ 的最小值为 $(1+\sqrt{2})^4$

84

Threads

2338

Posts

4

Reputation

Show all posts

其妙 posted 2025-7-6 15:46
Last edited by hbghlyj 2025-7-6 15:52不等式研究欣赏QQ群(群号为305078297)里的刘海嵘老师的证明:
\begin{aligned}
& (y+z)(z+4) \geqslant z(\sqrt{y}+2)^2 \\
& (1+x)(x+y) \geqslant x(1+\sqrt{y})^2 \\
& \Rightarrow f(x, y, z) \geqslant \frac{(y+3 \sqrt{y}+2)^2}{y} \geqslant(3+2 \sqrt{2})^2=(1+\sqrt{2})^4
\end{aligned}

766

Threads

4686

Posts

27

Reputation

Show all posts

isee posted 2025-7-6 16:07
其妙 发表于 2025-7-6 15:46
不等式研究欣赏QQ群(群号为305078297)里的刘海嵘老师的证明:
\begin{aligned}
& (y+z)(z+4) \geqslant z ...
这又是从哪儿来的题?
isee=freeMaths@知乎

677

Threads

110K

Posts

216

Reputation

Show all posts

kuing posted 2025-7-6 17:36
就一道简单小题,突然就成热门题了吗,啥情况?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-6 17:43 GMT+8

Powered by Discuz!

Processed in 0.016914 seconds, 38 queries