Forgot password?
 Create new account
View 1576|Reply 5

[不等式] 运用不等式如何求解?

[Copy link]

2

Threads

4

Posts

31

Credits

Credits
31

Show all posts

hcgzsxm Posted at 2017-10-8 18:04:40 |Read mode
Last edited by hbghlyj at 2025-3-22 23:36:37已知 $x>0, y>0$,且 $x+y=1$,则 $\frac{1}{x^2}+\frac{8}{y^2}$ 的最小值为
运用不等式如何求解?

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2017-10-8 18:24:28
你可以百度一下“权方和不等式”或者“Carlson不等式”或者“Holder不等式”

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2017-10-9 23:48:24
回复 1# hcgzsxm
solution  see  here(见文末部分,类题演练2):blog.sina.com.cn/s/blog_54df069f0102vdqo.html

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2025-3-22 23:41:54
权方和不等式为:对于正实数 $a_i$ 和 $b_i$,正整数 $m$,有:
\[
\sum_{i=1}^n \frac{a_i^{m+1}}{b_i^m} \geq \frac{\left(\sum_{i=1}^n a_i\right)^{m+1}}{\left(\sum_{i=1}^n b_i\right)^m}
\]
取 $m=2$,应用权方和不等式:
\[
\frac{1^3}{x^2} + \frac{2^3}{y^2} \geq \frac{(1 + 2)^3}{(x + y)^2}= 27
\]
等号成立的条件是 $\frac{a_1}{b_1} = \frac{a_2}{b_2}$,即 $\frac{1}{x} = \frac{2}{y}$。结合 $x + y = 1$,解得 $x = \frac{1}{3}$,$y = \frac{2}{3}$。

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2025-3-23 18:23:09
hcgzsxm 发表于 2017-10-8 18:04
已知 $x>0, y>0$,且 $x+y=1$,则 $\frac{1}{x^2}+\frac{8}{y^2}$ 的最小值为
运用不等式如何求解? ...
Solution 1
由均值不等式
\begin{align*}
\sqrt{\frac{\frac1{x^2}+\frac{4}{y^2}+\frac{4}{y^2}}3}&\geqslant\frac{3}{x+\frac y2+\frac y2}\\[1ex]
\Rightarrow \frac1{x^2}+\frac8{y^2}&\geqslant 27.
\end{align*}


Solution 2

记 $\frac1{x^2}+\frac8{y^2}=s^3$,于是 $\frac1{x^2s^3}+\frac8{y^2s^3}=1$,则由均值不等式,有
\begin{align*}
\frac 1{x^2s^3}+x+x&\geqslant 3\cdot \frac1{s}\\
\frac8{y^2s^3}+y+y&\geqslant 3\cdot \frac{2}{s}
\end{align*}
两次相加,整理即得
\begin{gather*}
1+1+1\geqslant 3\cdot \frac 3s\\
\Rightarrow \frac1{x^2}+\frac8{y^2}=s^3\geqslant 27.
\end{gather*}
isee=freeMaths@知乎

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2025-3-23 18:24:23
hbghlyj 发表于 2025-3-22 23:41
权方和不等式为:对于正实数 $a_i$ 和 $b_i$,正整数 $m$,有:
\[
\sum_{i=1}^n \frac{a_i^{m+1}}{b_i^m}  ...
原来是七八年前的帖子
isee=freeMaths@知乎

手机版Mobile version|Leisure Math Forum

2025-4-21 01:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list