|
isee
Posted at 2025-3-23 18:23:09
Solution 1
由均值不等式
\begin{align*}
\sqrt{\frac{\frac1{x^2}+\frac{4}{y^2}+\frac{4}{y^2}}3}&\geqslant\frac{3}{x+\frac y2+\frac y2}\\[1ex]
\Rightarrow \frac1{x^2}+\frac8{y^2}&\geqslant 27.
\end{align*}
Solution 2
记 $\frac1{x^2}+\frac8{y^2}=s^3$,于是 $\frac1{x^2s^3}+\frac8{y^2s^3}=1$,则由均值不等式,有
\begin{align*}
\frac 1{x^2s^3}+x+x&\geqslant 3\cdot \frac1{s}\\
\frac8{y^2s^3}+y+y&\geqslant 3\cdot \frac{2}{s}
\end{align*}
两次相加,整理即得
\begin{gather*}
1+1+1\geqslant 3\cdot \frac 3s\\
\Rightarrow \frac1{x^2}+\frac8{y^2}=s^3\geqslant 27.
\end{gather*} |
|