Forgot password?
 Create new account
View 2290|Reply 2

[组合] [转载自旧版论坛]n个球r个盒

[Copy link]

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-9-5 14:03:42 |Read mode
\begin{array}{|c|c|c|c|c|}
\hline
n~个球&r~个盒&是否允许有空盒&方案数&说明\\
\hline
不同&不同&允许&r^n&乘法原理\\
\hline
不同&不同&不允许&r!S_2(n,r)&\\
\hline
不同&相同&允许&\sum_{i=1}^rS_2(n,i)&仅有空盒若干时转化为下一类故为求和\\
\hline
不同&相同&不允许&S_2(n,r)&第二类~\text{Stirling}~数\\
\hline
相同&不同&允许&\mathrm C_{n+r-1}^{r-1}&隔板法'\\
\hline
相同&不同&不允许&\mathrm C_{n-1}^{r-1}&隔板法\\
\hline
相同&相同&允许&\sum_{i=1}^rP(n,i)&仅有空盒若干时转化为下一类故为求和\\
\hline
相同&相同&不允许&P(n,r)&见~\text{http://zh.wikipedia.org/wiki/整数分拆}\\
\hline
\end{array}

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2013-9-5 14:04:40
最近连续几次看到这类问题,故此刚才无聊就打了这个表。那个 S_2 和 P 我也没怎么研究过,大概在任何一本组合数学的书里面都能找到这些吧。

顺便把 Stirling 数的链接也给一下了 zh.wikipedia.org/wiki/Stirling%E6%95%B8 里面有计算公式神马的了。

PS、相对来说还是整数分拆比较难些

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2021-10-9 15:56:34
en.wikipedia.org/wiki/Twelvefold_way
The twelve combinatorial objects and their enumeration formulas.
$f$-classAny $f$Injective fSurjective $f$
Distinct $f$$n$-sequence in $X$
$x^n$
$n$-permutation of $X$
$x^{\underline n}$
composition of $N$ with $x$ subsets
$x!\{{n\atop x}\}$
$S_n$ orbits
$f\circ S_n$
$n$-multisubset of $X$
$\binom{x+n-1}n$
$n$-subset of $X$
$\binom xn$
composition of $n$ with $x$ terms
$\binom{n-1}{n-x}$
$S_x$ orbits
$S_x∘f$
partition of $N$ into ≤$x$ subsets
$\displaystyle\sum_{k=0}^x\left\{{n\atop k}\right\}$
partition of $N$ into ≤$x$ elements
$[n\leq x]$
partition of $N$ into $x$ subsets
$\left\{{n\atop x}\right\}$
$S_n×S_x$ orbits
$S_x∘f∘S_n$
partition of $n$ into ≤$x$ parts
$p_x(n+x)$
partition of $n$ into ≤$x$ parts 1
$[n\leq x]$
partition of $n$ into $x$ parts
$p_x(n)$

手机版Mobile version|Leisure Math Forum

2025-4-21 14:22 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list