Forgot password?
 Create new account
View 129|Reply 2

[函数] $(1+x)^n$的展开式中, $n$的幂的系数?

[Copy link]

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2022-11-8 03:19:49 |Read mode
在$\displaystyle\sum_{i=0}^∞\frac{n(n-1)\cdots(n-i+1)}{i!}x^i$中, $n$的幂的系数?
取$i≤2$展开:
\[1+n \left(x-\frac{x^2}{2}\right)+\frac{n^2 x^2}{2}\]
取$i≤20$展开看看:
  1. CoefficientList[Sum[Product[n - k + 1, {k, 1, i}]/i! x^i, {i, 0, 20}], n]
Copy the Code

次数系数
0\[1\]
1\[x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\cdots\to\log(1+x)\]
2\[\frac{x^2}{2}-\frac{x^3}{2}+\frac{11 x^4}{24}-\frac{5 x^5}{12}+\cdots\to\frac{1}{2} \log ^2(1+x)\]
3\[\frac{x^3}{6}-\frac{x^4}{4}+\frac{7 x^5}{24}-\frac{5 x^6}{16}+\cdots\to\frac{1}{6} \log ^3(1+x)\]
$k$$$\frac{x^k}k-\cdots\to\frac{\log^k(1+x)}{k!}\quad\text?$$

相关帖子:二项式级数

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2022-11-8 03:25:19
$(1+x)^n$看作$n$的函数$f(n)=\exp(n\log(1+x))$, 根据exp的展开式,
$$f(n)=\sum_{i=0}^∞\frac{n(n-1)\cdots(n-i+1)}{i!}x^i=\sum_{k=0}^∞\frac{(\log(1+x))^k}{k!}n^k\quad\forall|x|<1$$
当$n\to\infty$, 两边的$n^k$的系数相等, 因为都等于$\displaystyle\lim_{n→∞}\frac{f(n)}{n^k}$.
可以使用这种方法由二项级数得到对数级数

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2022-11-10 10:42:47

Stirling numbers of the first kind

planetmath.org/stirlingnumbersofthefirstkind
Generating Function.
There is also a strong connection with the generalized binomial formula, which furnishes us with the following generating function:$$(1+t)^{x}=\sum_{n=0}^{\infty} \sum_{k=1}^{n} s(n, k) x^{k} \frac{t^{n}}{n !}$$

手机版Mobile version|Leisure Math Forum

2025-4-21 01:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list