Forgot password?
 Create new account
View 124|Reply 2

finitely generated $ℤ$-module

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-2-26 08:34:23 |Read mode
  • For $α, β ∈\barℤ$ show that $ℤ[α][β]$ is a finitely generated $ℤ$-module.
  • Conversely, show that if $ℤ[γ]$ is a finitely generated $ℤ$-module then $γ ∈\bar ℤ$.
  • Deduce that $\barℤ$ is a ring.

For 2, see Prove that $\barℤ$ is a ring Czhang271828's answer
若 $K[a]$ 为有限生成 $K$-模, 取生成元 $\{x_i\}_{i=1}^ n\subseteq K[a]$. 从而存在矩阵 $A\in K^{n\times n}$ 使得\[(x_1\,x_2\,\cdots \,x_n)\cdot a=(x_1\,x_2\,\cdots \,x_n)\cdot A.\]此时 $aI-A$ 有零特征向量, 因此 $a$ 是首一多项式 $\det(xI-A)$ 的根.

Related: not every ideal in $\barℤ$ is finitely generated.

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-2-26 19:54:28
1和3呢?

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-2-26 21:13:15
其实我都证明了吧.

(1) 就是回答中 "根据数学归纳法" 处. 展开讲之: 若 $\mathbb Z[\alpha]$ 由 $\{\alpha^i\}_{i=0}^m$ 生成, $\mathbb Z[\beta]$ 由 $\{\beta^j\}_{j=0}^n$ 生成, 那么 $\mathbb Z[\alpha][\beta]$ 由 $\{\alpha^i\beta^j\}_{0\leq i\leq m,0\leq j\leq n}$ 生成.

(3) 就是依照环的定义检测 $\overline{\mathbb Z}$ 是个环. 由于每次检测加法乘法分配律等等时只会用到有限个代数整数(记作集合 $S$), 从而检测结果自然落在 $S$ 生成的代数整数环中, 也是 $\overline{\mathbb Z} $ 的子集.

像 (3) 这样, 检测某些有限运算的封闭性只会用到这个环的"有限大的局部", 用范畴的语言说是保持余积.  

手机版Mobile version|Leisure Math Forum

2025-4-20 22:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list