Forgot password?
 Create new account
View 154|Reply 2

[数论] $x^5+x^3+x+1$在整数mod 3不可约

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-4-17 04:24:22 |Read mode
Last edited by hbghlyj at 2024-5-8 08:15:00$x^5+x^3+x+1$在整数mod p的分解:
GF(2) $(x + 1) (x^4 + x^3 + 1)$
GF(3) $x^5 + x^3 + x + 1$
GF(5) $(x^2 + 3 x + 4) (x^3 + 2 x^2 + x + 4)$
GF(7) $x^5 + x^3 + x + 1$
GF(11) $(x + 6)^3 (x^2 + 4 x + 8)$
GF(13) $(x^2 + 12 x + 3) (x^3 + x^2 + 12 x + 9)$
GF(17) $(x + 3) (x^4 + 14 x^3 + 10 x^2 + 4 x + 6)$
GF(19) $(x + 13) (x^4 + 6 x^3 + 18 x^2 + 13 x + 3)$
GF(23) $(x + 16) (x^4 + 7 x^3 + 4 x^2 + 5 x + 13)$
GF(29) $(x^2 + 22 x + 19) (x^3 + 7 x^2 + 2 x + 26)$
GF(31) $(x + 19) (x^4 + 12 x^3 + 21 x^2 + 4 x + 18)$
GF(37) $(x + 16)^2 (x + 32) (x^2 + 10 x + 5)$
GF(41) $(x + 2) (x + 15) (x^3 + 24 x^2 + 14 x + 26)$
GF(43) $(x + 41) (x^4 + 2 x^3 + 5 x^2 + 10 x + 21)$
GF(47) $x^5 + x^3 + x + 1$
GF(53) $(x + 11) (x + 26) (x^3 + 16 x^2 + 24 x + 48)$

CLAIM. The polynomial $h(x)=x^5+x^3+x+1$ is irreducible over the integers modulo 3.
因为5<3+3,假设它可约,则它有线性或二次因子。容易检查不存在 $\mathbf{Z}_3$ 上的根,所以我们要做的就是证明它没有二次因子。

There is a field $\mathbf{F}_9$ with exactly 9 elements which contains $\mathbf{Z}_3$ and also contains a square root $i$ of $-1$. This is true because $x^2+1$ has no roots in $\mathbf{Z}_3$. If there are irreducible quadratic factors, the theory of finite fields implies that there must be a root for $h(x) \bmod 3$ in the field $\mathbf{F}_9$. Every element in $\mathbf{F}_9$ is uniquely expressible in the form $a+b i$ where $a, b \in \mathbf{Z}_3$. One can check directly that none of these elements can be a root of the polynomial $h(x)$ reduced $\text{mod } 3$; an argument of this sort is definitely not elegant, but it works and does not require additional digressions.

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2023-4-19 01:46:47
Last edited by hbghlyj at 2024-5-8 08:11:00怎样证明$h(x)$在整数mod 7不可约?

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2024-5-8 16:14:08
$x^5+x^3+x+1\bmod p$不可约的$p$:Select[Prime[Range[100]],IrreduciblePolynomialQ [x^5+x^3+x+1,Modulus->#]&]
{3, 7, 47, 67, 71, 107, 149, 151, 157, 173, 211, 229, 233, 307, 397, 433, 443, 521}
没有什么规律

手机版Mobile version|Leisure Math Forum

2025-4-21 14:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list