Forgot password
 Register account
View 279|Reply 2

[数论] $x^5+x^3+x+1$在整数mod 3不可约

[Copy link]

3208

Threads

7845

Posts

51

Reputation

Show all posts

hbghlyj posted 2023-4-17 04:24 |Read mode
Last edited by hbghlyj 2024-5-8 08:15$x^5+x^3+x+1$在整数mod p的分解:
GF(2) $(x + 1) (x^4 + x^3 + 1)$
GF(3) $x^5 + x^3 + x + 1$
GF(5) $(x^2 + 3 x + 4) (x^3 + 2 x^2 + x + 4)$
GF(7) $x^5 + x^3 + x + 1$
GF(11) $(x + 6)^3 (x^2 + 4 x + 8)$
GF(13) $(x^2 + 12 x + 3) (x^3 + x^2 + 12 x + 9)$
GF(17) $(x + 3) (x^4 + 14 x^3 + 10 x^2 + 4 x + 6)$
GF(19) $(x + 13) (x^4 + 6 x^3 + 18 x^2 + 13 x + 3)$
GF(23) $(x + 16) (x^4 + 7 x^3 + 4 x^2 + 5 x + 13)$
GF(29) $(x^2 + 22 x + 19) (x^3 + 7 x^2 + 2 x + 26)$
GF(31) $(x + 19) (x^4 + 12 x^3 + 21 x^2 + 4 x + 18)$
GF(37) $(x + 16)^2 (x + 32) (x^2 + 10 x + 5)$
GF(41) $(x + 2) (x + 15) (x^3 + 24 x^2 + 14 x + 26)$
GF(43) $(x + 41) (x^4 + 2 x^3 + 5 x^2 + 10 x + 21)$
GF(47) $x^5 + x^3 + x + 1$
GF(53) $(x + 11) (x + 26) (x^3 + 16 x^2 + 24 x + 48)$

CLAIM. The polynomial $h(x)=x^5+x^3+x+1$ is irreducible over the integers modulo 3.
因为5<3+3,假设它可约,则它有线性或二次因子。容易检查不存在 $\mathbf{Z}_3$ 上的根,所以我们要做的就是证明它没有二次因子。

There is a field $\mathbf{F}_9$ with exactly 9 elements which contains $\mathbf{Z}_3$ and also contains a square root $i$ of $-1$. This is true because $x^2+1$ has no roots in $\mathbf{Z}_3$. If there are irreducible quadratic factors, the theory of finite fields implies that there must be a root for $h(x) \bmod 3$ in the field $\mathbf{F}_9$. Every element in $\mathbf{F}_9$ is uniquely expressible in the form $a+b i$ where $a, b \in \mathbf{Z}_3$. One can check directly that none of these elements can be a root of the polynomial $h(x)$ reduced $\text{mod } 3$; an argument of this sort is definitely not elegant, but it works and does not require additional digressions.

3208

Threads

7845

Posts

51

Reputation

Show all posts

original poster hbghlyj posted 2023-4-19 01:46
Last edited by hbghlyj 2024-5-8 08:11怎样证明$h(x)$在整数mod 7不可约?

3208

Threads

7845

Posts

51

Reputation

Show all posts

original poster hbghlyj posted 2024-5-8 16:14
$x^5+x^3+x+1\bmod p$不可约的$p$:Select[Prime[Range[100]],IrreduciblePolynomialQ [x^5+x^3+x+1,Modulus->#]&]
{3, 7, 47, 67, 71, 107, 149, 151, 157, 173, 211, 229, 233, 307, 397, 433, 443, 521}
没有什么规律

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-12 17:38 GMT+8

Powered by Discuz!

Processed in 0.030382 seconds, 39 queries