Forgot password?
 Register account
View 556|Reply 5

[数列] 阿里baba数学竞赛数列题

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2023-6-21 08:23 |Read mode
Last edited by lemondian 2023-6-21 11:17若序列$a_{n+1}=a_n+\dfrac{a^2_n}{n^2},a_1=\dfrac{2}{5}$,证明:对所有正整数$n$都有$a_n<1$。

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2023-6-21 10:36
$a_1$呢?要$a_1>1$不完犊子?

Comment

Sorry,已改!  Posted 2023-6-21 11:18

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2023-6-21 15:43
显然$a_n$是递增的,然后
\[a_1=\frac{2}{5}<1\]
\[a_2=\frac{14}{25}<1\]
\[a_3=\frac{399}{625}<1\]
\[a_4=\frac{267064}{390625}<1\]
对于$n\ge 5$,有
\[a_n-a_4=\frac{a_4^2}{4^2}+\frac{a_5^2}{5^2}+...+\frac{a_{n-1}^2}{(n-1)^2}<a_{n-1}^2\sum_{k=4}^{\infty}\frac{1}{k^2}=a_{n-1}^2(\frac{\pi^2}{6}-\frac{49}{36})\]
\[a_n<a_{n-1}^2(\frac{\pi^2}{6}-\frac{49}{36})+a_4=a_{n-1}^2(\frac{\pi^2}{6}-\frac{49}{36})+\frac{267064}{390625}\]
故此,如果$a_{n-1}<1$,则有
\[a_n<(\frac{\pi^2}{6}-\frac{49}{36})+\frac{267064}{390625}=\frac{\pi^2}{6}-\frac{9526321}{14062500}=0.967507<1\]
而显然$a_4<1$成立,因此归纳成立

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-6-21 18:03
不难。

递推式倒数得
\[\frac1{a_{n+1}}=\frac1{a_n}-\frac1{a_n+n^2},\]
易知 `a_2=14/25`,所以对任意正整数 `n\geqslant2`,有
\begin{align*}
\frac1{a_{n+1}}&=\frac1{a_2}-\frac1{a_2+2^2}-\frac1{a_3+3^2}-\cdots-\frac1{a_n+n^2}\\
&>\frac{25}{14}-\frac1{2^2}-\frac1{3^2}-\cdots-\frac1{n^2}\\
&>\frac{25}{14}-\frac14-\frac1{3\cdot2}-\cdots-\frac1{n(n-1)}\\
&=\frac{25}{14}-\frac14-\frac12+\frac1n\\
&=\frac{29}{28}+\frac1n\\
&>1,
\end{align*}
所以 `a_{n+1}<1`。

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2024-2-4 10:34 From mobile phone
Last edited by 睡神 2024-5-6 21:25这个是老题了
forum.php?mod=viewthread&tid=2554&ext … page=21&mobile=2
除了不懂,就是装懂

Mobile version|Discuz Math Forum

2025-5-31 11:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit