Forgot password?
 Register account
View 563|Reply 5

[数列] 宁波十校第十题,感觉难得被按在水下一样

[Copy link]

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2022-4-1 09:39 |Read mode
微信图片_20220401093616.jpg
微信图片_20220401093628踩踩踩.jpg
又没别的简易些办法?

686

Threads

110K

Posts

910K

Credits

Credits
91224
QQ

Show all posts

kuing Posted 2022-4-1 10:38
forum.php?mod=viewthread&tid=6451(选项不同,没用,这次的结论强于上次)

770

Threads

4692

Posts

310K

Credits

Credits
35049

Show all posts

isee Posted 2022-4-1 10:54
回复 2# kuing

我翻了一下没翻到,浙江喜欢出这种题.

回帖是提醒我自己试试能不能估阶

686

Threads

110K

Posts

910K

Credits

Credits
91224
QQ

Show all posts

kuing Posted 2022-4-1 14:21
仿照 2# 链接中的数归法,来证明:`a_n\geqslant(n+1)/(n+3)`,且当 `n>1` 时不取等号。

`n=1` 成立,假设 `n=k` 成立,则当 `n=k+1` 时
\[\ln a_{k+1}=a_k-1\geqslant\frac{k+1}{k+3}-1=-\frac2{k+3},\]
于是只需证
\[-\frac2{k+3}>\ln\frac{k+2}{k+4},\]
变形即
\[\frac{(k+4)-(k+2)}{\ln(k+4)-\ln(k+2)}<\frac{(k+4)+(k+2)}2,\]
由对数平均不等式可知成立,即得证。

770

Threads

4692

Posts

310K

Credits

Credits
35049

Show all posts

isee Posted 2022-4-1 16:51
罢了罢了,有个知乎参考估阶的

770

Threads

4692

Posts

310K

Credits

Credits
35049

Show all posts

isee Posted 2022-4-1 17:16
仿照 2# 链接中的数归法,来证明:`a_n\geqslant(n+1)/(n+3)`,且当 `n>1` 时不取等号。

`n=1` 成立,假设 ...
kuing 发表于 2022-4-1 14:21

是找规律猜到这个关于 n 的分式的?
感觉浙江这种题入手好窄,但一旦方向对了就破了.

Mobile version|Discuz Math Forum

2025-6-1 19:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit