Forgot password?
 Register account
View 2813|Reply 6

[不等式] 2013大纲全国卷理压轴题

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2013-6-30 11:18 |Read mode
第二问,证明:$ (\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+n})+\frac{1}{4n}>\ln 2 $,$ n\in\mathbf{N^*} $

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2013-6-30 11:19
$ (\dfrac{1}{n+1}+\dfrac{1}{n+2}+\ldots+\dfrac{1}{n+n})+\dfrac{1}{4n}>\ln 2 $,$ n\in\mathbf{N^*} $

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2013-6-30 12:50
呃?2013高考题?怎么我记得很早以前就见过……

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2013-6-30 13:38
回复 3# kuing
搜了一下真的有
zhidao.baidu.com/question/154736889.html(2010,无解答)
bbs.pep.com.cn/forum.php?mod=viewthread&tid=877061(2011,有解答,但用到极限)

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2013-6-30 21:42
有$\ln2$,恐怕定积分比较好吧?
没动笔

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2013-6-30 21:52
Last edited by hbghlyj 2025-3-22 00:02回复 5# 其妙
原答案:(后来者作为的资料)
即 $\frac{x(2+x)}{2+2 x}>\ln (1+x)$.
取 $x=\frac{1}{k}$,则 $\frac{2 k+1}{2 k(k+1)}>\ln \frac{k+1}{k}$.
于是
\[
\begin{aligned}
a_{2 n}-a_n+\frac{1}{4 n} & =\sum_{k=n}^{2 \pi-1}\left(\frac{1}{2 k}+\frac{1}{2(k+1)}\right) \\
& =\sum_{k=n}^{2 \pi-1} \frac{2 k+1}{2 k(k+1)} \\
& >\sum_{k=n}^{2 n-1} \ln \frac{k+1}{k} \\
& =\ln 2 n-\ln n \\
& =\ln 2
\end{aligned}
\]
所以 $a_{2 n}-a_n+\frac{1}{4 n}>\ln 2$.

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2017-10-16 11:35
这是不和谐的式子,很难想到把倒数第二项调到第一项。
下面的链接有人探讨了此题的解题方法:
blog.sina.com.cn/s/blog_804164070102wcxz.html … 001-415A6562-95E-8A0

Mobile version|Discuz Math Forum

2025-5-31 10:44 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit