|
其妙
Posted 2013-6-30 21:52
Last edited by hbghlyj 2025-3-22 00:02回复 5# 其妙
原答案:(后来者作为的资料)
即 $\frac{x(2+x)}{2+2 x}>\ln (1+x)$.
取 $x=\frac{1}{k}$,则 $\frac{2 k+1}{2 k(k+1)}>\ln \frac{k+1}{k}$.
于是
\[
\begin{aligned}
a_{2 n}-a_n+\frac{1}{4 n} & =\sum_{k=n}^{2 \pi-1}\left(\frac{1}{2 k}+\frac{1}{2(k+1)}\right) \\
& =\sum_{k=n}^{2 \pi-1} \frac{2 k+1}{2 k(k+1)} \\
& >\sum_{k=n}^{2 n-1} \ln \frac{k+1}{k} \\
& =\ln 2 n-\ln n \\
& =\ln 2
\end{aligned}
\]
所以 $a_{2 n}-a_n+\frac{1}{4 n}>\ln 2$. |
|