Forgot password?
 Register account
View 190|Reply 1

[几何] 矩形 最小值

[Copy link]

3152

Threads

7905

Posts

610K

Credits

Credits
64068
QQ

Show all posts

hbghlyj Posted 2024-11-4 01:08 |Read mode
矩形ABCD中,AB=4,BC=6,E是BC边上一动点,C与C'关于AE对称,在AE上取F,使$\angle ABF=\angle C'BC$,则BE+AF的最小值为?

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2024-11-4 15:21
建系 $A(0,4)$ $B(0,0)$ $C(6,0)$ $D(6,4)$
设 $BE=a$ $(0<a<6)$ 则 $E(a,0)$

$AE:y=-\dfrac4ax+4$ 可求得 $C'\left(\dfrac{6a^2+32a-96}{a^2+16},\dfrac{8a(a-6)}{a^2+16}\right)$

所以 $k_{BC'}=\dfrac{4a(6-a)}{3a^2+16a-48}$  故 $BF:y=\dfrac{3a^2+16a-48}{4a(6-a)}x$ 可得 $x_{F}=\dfrac{16a(6-a)}{3a^2+48}$
$$BE+AF=a+\sqrt{1+\frac{16}{a^2}}\cdot\frac{16a(6-a)}{3a^2+48}$$
其最小值为 $729 x^6-73872 x^4+2239488 x^3-2979072 x^2-262766592 x+1245483008$ 的一根.约为 $5.823389$.
Wir müssen wissen, wir werden wissen.

Mobile version|Discuz Math Forum

2025-6-4 17:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit