Forgot password?
 Register account
View 523|Reply 5

[不等式] n!相关的一个不等式

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2025-4-29 15:49 |Read mode
$n\in N^*$,求证:$\frac{5}{6} < \ln {n!}-(n+\frac{1}{2})\ln n +n \le 1$  .
  右边可用数学归纳法证明,左边没试出来.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2025-4-29 16:07
易知中间那块关于 `n` 递减,算极限吧

很明显这题是由 Stirling 公式出的:
\[n!\approx\sqrt{2\pi n}\left(\frac ne\right)^n\riff\ln n!\approx\ln\sqrt{2\pi}+\frac12\ln n+n\ln n-n,\]
所以中间那块的极限应该就是 `\ln\sqrt{2\pi}`,约为 `0.918939`。

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2025-4-29 16:09
是不是去年的天津卷?

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2025-4-29 16:09
23年高考天津卷压轴题
forum.php?mod=viewthread&tid=11133

Comment

哦,对,前年的  Posted 2025-4-29 16:36
isee=freeMaths@知乎

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2025-4-29 20:49
尝试证明 $n\geq2$ 时,
$$\left[\ln(n!)-\left(n+\frac12\right)\ln n+n\right]-\left[\ln\Big[(n-1)!\Big]-\left(n-\frac12\right)\ln(n-1)+n-1\right]>\frac16\left(\frac1n-\frac{1}{n-1}\right)$$
等价于
$$1-\left(n-\frac12\right)\ln\frac{n}{n-1}>\frac16\left(\frac1n-\frac{1}{n-1}\right)$$
熟知
$$\ln x<\frac{(x-1)(x+5)}{4x+2},x>1$$
$$\Longrightarrow\ln\frac{n}{n-1}<\frac{6n-5}{(6n-2)(n-1)}$$
代入易证.
故 $$\ln(n!)-\left(n+\frac12\right)\ln n+n>1-\frac16\left(1-\frac12+\frac12-\frac13+\cdots+\frac{1}{n-1}-\frac1n\right)>1-\frac16=\frac56$$
Wir müssen wissen, wir werden wissen.

Mobile version|Discuz Math Forum

2025-5-31 11:08 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit