|
尝试证明 $n\geq2$ 时,
$$\left[\ln(n!)-\left(n+\frac12\right)\ln n+n\right]-\left[\ln\Big[(n-1)!\Big]-\left(n-\frac12\right)\ln(n-1)+n-1\right]>\frac16\left(\frac1n-\frac{1}{n-1}\right)$$
等价于
$$1-\left(n-\frac12\right)\ln\frac{n}{n-1}>\frac16\left(\frac1n-\frac{1}{n-1}\right)$$
熟知
$$\ln x<\frac{(x-1)(x+5)}{4x+2},x>1$$
$$\Longrightarrow\ln\frac{n}{n-1}<\frac{6n-5}{(6n-2)(n-1)}$$
代入易证.
故 $$\ln(n!)-\left(n+\frac12\right)\ln n+n>1-\frac16\left(1-\frac12+\frac12-\frac13+\cdots+\frac{1}{n-1}-\frac1n\right)>1-\frac16=\frac56$$ |
|