Forgot password
 Register account
View 604|Reply 12

[组合] 掷硬币2n次恰好n次正面概率

[Copy link]

3214

Threads

7831

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-1-8 03:13 |Read mode
Last edited by hbghlyj 2023-3-29 13:41(趣味书1089 and all that, page 92)
If you toss a coin $2n$ times, where $n$ is very large, then the probability of getting exactly $n$ heads and exactly $n$ tails is approximately $\frac1{\sqrt{n\pi}}$.
证:
相当于证明$\underset{n\to \infty }{\text{lim}}\frac{\sqrt{n} (2 n)!}{2^{2 n} (n!)^2}=\frac1{\sqrt\pi}$.
由Stirling公式,$n! \approx \sqrt{2\pi n}\, \left(\frac{n}{e}\right)^{n}$,所以$(2n)! \approx \sqrt{2\pi·2n}\, \left(\frac{2n}{e}\right)^{2n}$,所以$\underset{n\to \infty }{\text{lim}}\frac{\sqrt{n} (2 n)!}{2^{2 n} (n!)^2}=\underset{n\to \infty }{\text{lim}}\frac{\sqrt{n}\sqrt{2\pi·2n}\, \left(\frac{2n}{e}\right)^{2n}}{2^{2 n} (\sqrt{2\pi n}\, \left(\frac{n}{e}\right)^{n})^2}=\frac1{\sqrt\pi}$.

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-1-8 03:43
回复 1# hbghlyj

少点守夜吧,别学我啊

48

Threads

771

Posts

93

Reputation

Show all posts

Czhang271828 posted 2022-1-15 17:09
相似问题: 数轴原点处有 $\aleph_0$ 个小球, 即可以用自然数对小球一一对应地编号. 对任意小球而言, 其在每步移动中左移一格的概率恒为 $p$, 右移一格的概率恒为 $1-p$. 今移动所有小球, 使得第 $n$ 个小球恰好随机移动 $n$ 步. 当所有小球完成移动后, 坐标 $m$ 处小球数量的期望值为 $E_m$.

当 $p=\dfrac{1}{2}$ 时, 所有 $E_m$ 均为无穷大; 当 $p\neq\dfrac{1}{2}$时, 所有 $E_m$ 均为有限值.

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2022-1-15 17:16
hbghlyj  快来,终于有人不水你的楼了~~~

48

Threads

771

Posts

93

Reputation

Show all posts

Czhang271828 posted 2022-1-15 20:45
回复 1# hbghlyj


以及二项分布在 $n$ 足够大时会近似趋向正态分布: De Moivre-Laplace theorem 定律如是说. 一般用中心极限定理证明, 当然可以这么展开(源码来源不明)

\begin{aligned}{n \choose k}p^{k}q^{n-k}&\simeq {\frac {1}{\sqrt {2\pi npq}}}\exp \left\{\ln \left(\left({\frac {np}{k}}\right)^{k}\right)+\ln \left(\left({\frac {nq}{n-k}}\right)^{n-k}\right)\right\}\\&={\frac {1}{\sqrt {2\pi npq}}}\exp \left\{-k\ln \left({\frac {k}{np}}\right)+(k-n)\ln \left({\frac {n-k}{nq}}\right)\right\}\\&={\frac {1}{\sqrt {2\pi npq}}}\exp \left\{-k\ln \left({\frac {np+x{\sqrt {npq}}}{np}}\right)+(k-n)\ln \left({\frac {n-np-x{\sqrt {npq}}}{nq}}\right)\right\}\\&={\frac {1}{\sqrt {2\pi npq}}}\exp \left\{-k\ln \left({1+x{\sqrt {\frac {q}{np}}}}\right)+(k-n)\ln \left({1-x{\sqrt {\frac {p}{nq}}}}\right)\right\}\qquad p+q=1\\&={\frac {1}{\sqrt {2\pi npq}}}\exp \left\{-k\left({x{\sqrt {\frac {q}{np}}}}-{\frac {x^{2}q}{2np}}+\cdots \right)+(k-n)\left({-x{\sqrt {\frac {p}{nq}}}-{\frac {x^{2}p}{2nq}}}-\cdots \right)\right\}\\&={\frac {1}{\sqrt {2\pi npq}}}\exp \left\{\left(-np-x{\sqrt {npq}}\right)\left({x{\sqrt {\frac {q}{np}}}}-{\frac {x^{2}q}{2np}}+\cdots \right)+\left(np+x{\sqrt {npq}}-n\right)\left(-x{\sqrt {\frac {p}{nq}}}-{\frac {x^{2}p}{2nq}}-\cdots \right)\right\}\\&={\frac {1}{\sqrt {2\pi npq}}}\exp \left\{\left(-np-x{\sqrt {npq}}\right)\left(x{\sqrt {\frac {q}{np}}}-{\frac {x^{2}q}{2np}}+\cdots \right)-\left(nq-x{\sqrt {npq}}\right)\left(-x{\sqrt {\frac {p}{nq}}}-{\frac {x^{2}p}{2nq}}-\cdots \right)\right\}\\&={\frac {1}{\sqrt {2\pi npq}}}\exp \left\{\left(-x{\sqrt {npq}}+{\frac {1}{2}}x^{2}q-x^{2}q+\cdots \right)+\left(x{\sqrt {npq}}+{\frac {1}{2}}x^{2}p-x^{2}p-\cdots \right)\right\}\\&={\frac {1}{\sqrt {2\pi npq}}}\exp \left\{-{\frac {1}{2}}x^{2}q-{\frac {1}{2}}x^{2}p-\cdots \right\}\\&={\frac {1}{\sqrt {2\pi npq}}}\exp \left\{-{\frac {1}{2}}x^{2}(p+q)-\cdots \right\}\\&\simeq {\frac {1}{\sqrt {2\pi npq}}}\exp \left\{-{\frac {1}{2}}x^{2}\right\}\\&={\frac {1}{\sqrt {2\pi npq}}}e^{\frac {-(k-np)^{2}}{2npq}}\\\end{aligned}

48

Threads

771

Posts

93

Reputation

Show all posts

Czhang271828 posted 2022-1-15 21:00
回复 3# Czhang271828

小球的问题想了一下, 为方便起见, 设第 $n$ 个小球移动 $2n$ 次.

考虑特殊情况, 原点处小球数量的期望值为 $\sum_{k=0}^\infty\binom{2k}{k}(pq)^k$​, 即加和所有小球回到原点的概率. 而
$$
\begin{align*}
\sum_{k=0}^\infty\binom{2k}{k}x^k=&\sum_{k=0}^\infty\dfrac{2^k\cdot1\cdot3\cdot5\cdots(2k-1)}{k!}x^k\\
=&\sum_{k=0}^\infty\dfrac{(-1/2)\cdot(-3/2)\cdots(-n+1/2)}{k!}\cdot(-4x)^k\\
=&\sum_{k=0}^\infty\binom{-1/2}{n}(-4x)^n\\
=&(1-4x)^{-1/2}
\end{align*}
$$
从而原点处小球数量期望为 $(1-4(p-p^2))^{-1/2}=\dfrac{1}{|1-2p|}$​. 记
$$
\theta:=\arcsin (2 \sqrt{x}) \in[0, \pi / 2].
$$
从而可以发现(后两个未验证)
$$
\left\{
\begin{align*}
&\sum_{n=0}^{\infty}\binom{2n}{n} x^{n}=\frac{1}{\sqrt{1-4 x}}=\frac{1}{\cos \theta} \\
&\sum_{n=0}^{\infty} \frac{1}{n+1}\binom{2n}{n} x^{n}=\frac{1-\sqrt{1-4 x}}{2 x}=\frac{1}{\cos ^{2}(\theta / 2)} \\
&\sum_{n=0}^{\infty}\binom{2n+k}{n} x^{n}=\frac{1}{\sin \theta \cdot \cos ^{2 k} \theta / 2} \\
&\sum_{n=0}^{\infty} \frac{k}{2 n+k}\binom{2n+k}{n} x^{n}=\frac{1}{\cos ^{2 k} \theta / 2}
\end{align*}
\right.
$$
坐标 $2m$ 处小球数量为 $\sum_{k=0}^\infty\binom{2k}{m+k}p^{k-m}q^{k+m}$, 从而:

1. 右侧: $P(X=2m)=((1-|p-q|)/2p)^{-2m}\cdot\dfrac{1}{|p-q|}$,

2. 左侧: $P(X=2m)\sim((1-|p-q|)/2q)^{-2m}\cdot \dfrac{1}{|p-q|}$.

3214

Threads

7831

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2022-11-3 04:48
Czhang271828 发表于 2022-1-15 13:45
以及二项分布在$n$足够大时会近似趋向正态分布: De Moivre-Laplace theorem 如是说. 一般用中心极限定理证明, 当然可以这么展开(源码来源不明)
问一下:  Wikipedia说  Poisson distribution is an alternative approximation of the binomial distribution for large values of $n$.
那么, 二项分布趋于正态分布, 难道它也趋于Poisson分布吗

3214

Threads

7831

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2022-11-3 04:51
hbghlyj 发表于 2022-11-2 21:48
问一下:  Wikipedia说  Poisson distribution is an alternative approximation of the binomial distrib ...
找到一个相关帖子: stats.stackexchange.com/a/34486
A $\mathrm{Poisson}(\lambda)$ pmf is the limiting pmf of a $\mathrm{Binomial}(n,p_n)$ with $p_n = \lambda / n$.

One rather lengthy development can be found on this blog.

But, we can prove this economically here as well. If $X_n \sim \mathrm{Binomial}(n,\lambda/n)$ then for fixed $k$
\begin{align*}
\mathbb P(X_n = k) &= \frac{n!}{k!(n-k)!} \left(\frac{\lambda}{n}\right)^k \left(1-\frac{\lambda}{n}\right)^{n-k} \\ &= \underbrace{\frac{n! n^{-k}}{(n-k)!}}_{\to 1} \frac{\lambda^k}{k!}\underbrace{(1-\lambda/n)^n}_{\to e^{-\lambda}} \cdot \underbrace{(1-\lambda/n)^{-k}}_{\to 1} \>.
\end{align*}The first and last terms are easily seen to converge to 1 as $n \to \infty$ (recalling that $k$ is fixed). So,
$$
\mathbb P(X_n = k) \to \frac{e^{-\lambda} \lambda^k}{k!} \,,
$$
as $n \to \infty$ since $(1-\lambda/n)^n \to e^{-\lambda}$.

In addition one has the normal approximation to the Binomial, i.e., $\mathrm{Binomial}(n,p)\approxeq^d \mathcal N(np, np(1-p))$. The approximation improves as $n \rightarrow \infty$ and $p$ stays away from 0 and 1. Obviously for the Poisson regime this is not the case (since there $p_n = \lambda / n \rightarrow 0$) but the larger $\lambda$ is the larger $n$ can be and still have a reasonable normal approximation.

3214

Threads

7831

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2022-11-24 17:43
Czhang271828 发表于 2022-1-15 14:00
回复 3# Czhang271828

小球的问题想了一下, 为方便起见, 设第 $n$ 个小球移动 $2n$ 次.
Example 6.10 (One-dimensional random walk). Consider again the familiar example of a one-dimensional random walk. Let $I=\{0,1,2, \ldots\}$ and let
\[
\begin{aligned}
p_{i, i+1} &=p \text { for } i \geq 0, \\
p_{i, i-1} &=q=1-p \text { for } i \geq 1, \\
p_{00} &=q .
\end{aligned}
\]
If $p>q$, we found previously that the walk is transient, so no stationary distribution will exist.

If $p=q$, the walk is recurrent, but the mean return time is infinite, so again there is no stationary distribution.

If $p<q$, the walk is positive recurrent. For stationarity, we need $\pi_i=\pi_{i-1} p+\pi_{i+1} q$ for $i \geq 1$. This is (not coincidentally) reminiscent of the hitting probability equation we previously found for the model (except the values of $p$ and $q$ are reversed). It has general solution $\pi_i=A+B(p / q)^i$.
We need $\sum \pi_i=1$, which forces $A=0$ and $B=(1-p / q)$, giving
\[
\pi_i=\left(1-\frac{p}{q}\right)\left(\frac{p}{q}\right)^i .
\]
That is, the stationary distribution of the walk is geometric with parameter $1-\frac{p}{q}$.

3214

Threads

7831

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2023-3-29 19:24
“掷硬币2n次恰好n次正面概率”就是$\mathbb Z^1$上的simple symmetric random walk 时刻$2n$回到起点0的概率.
5.9.1 d=1
We need to show that $\sum_{n=0}^{\infty} p_{00}^{(n)}=\infty$. We will use Stirling's formula, which tells us that $n ! \sim \sqrt{2 \pi} n^{n+1 / 2} e^{-n}$ as $n \rightarrow \infty$.
(The constant $\sqrt{2 \pi}$ will not be important.)
Suppose $X_0=0$. If $n$ is odd, then $\mathbb{P}_0\left(X_n=0\right)=0$, since the chain has period 2. For $X_{2 m}=0$ we need $m$ "ups" and $m$ "downs" in the first $2 m$ steps. Applying Stirling's formula to the binomial probability we obtain
$$
\begin{aligned}
p_{00}^{(2 m)} & =\left(\begin{array}{c}
2 m \\
m
\end{array}\right)\left(\frac{1}{2}\right)^{2 m} \\
& =\frac{(2 m) !}{m ! m !}\left(\frac{1}{2}\right)^{2 m} \\
& \sim \frac{1}{\sqrt{\pi}} \frac{1}{m^{1 / 2}}
\end{aligned}
$$
Since $\sum m^{-1 / 2}=\infty$, we have $\sum p_{00}^{(n)}=\infty$ and the chain is recurrent.
Exercise. Use Stirling's formula to show that if $p \neq q$, then the chain is transient. (We could also deduce this from the hitting probability analysis after (5.7).)

3214

Threads

7831

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2023-3-29 19:30

仿照试着写写

hbghlyj 发表于 2023-3-29 12:24
Exercise. Use Stirling's formula to show that if $p \neq q$, then the chain is transient.
\begin{align*}p_{00}^{(2m)}&=\binom{2m}m(pq)^{2m}\\&\sim\frac1{\sqrt\pi}\frac1{\sqrt m}(\underbrace{4pq}_{<1})^m\end{align*}
Since $\sum_{m=1}^\infty\frac1{\sqrt m}x^m<\infty$ for any $x\in(-1,1),$ we have $\sum_{n=0}^\infty p_{00}^{(n)}=\sum_{m=0}^\infty p_{00}^{(2m)}<\infty$
By Theorem 5.8, the state $0$ is transient, since this Markov chain is irreducible, by Proposition 5.9, this Markov chain is transient.

3214

Threads

7831

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2023-3-29 19:38
hbghlyj 发表于 2023-3-29 12:24
...(We could also deduce this from the hitting probability analysis after (5.7).)
参看这个讲义第51页的$p>q$情况:
Hence $h_i=\left(\frac{q}{p}\right)^i$. The chain has a positive probability of "escaping to infinity".
So the chain is transient.

3214

Threads

7831

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2023-3-30 05:47
Section 11 Long-term behaviour of Markov chains

Example 11.3 The simple random walk is null recurrent for \(p = \frac12\) and transient otherwise. Either way, we have \(\mathbb P(X_n = i) \to 0\) for all states \(i\), and there is no equilibrium distribution.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 13:39 GMT+8

Powered by Discuz!

Processed in 0.018868 seconds, 44 queries