Forgot password?
 Create new account
View 180|Reply 9

[概率/统计] 请教概率的问题

[Copy link]

10

Threads

10

Posts

110

Credits

Credits
110

Show all posts

yoyo987654 Posted at 2023-8-5 15:48:15 |Read mode
抛掷一颗4面骰子6次,求没有连续3次得到「1」的概率.

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2023-8-5 19:26:35

相关题

Last edited by hbghlyj at 2023-8-5 19:52:00A Collection of Dice Problems
2. On average, how many times must a 6-sided die be rolled until a 6 turns up twice in a row?

We can solve this using a recurrence relation on, $E$, the expected number of rolls. When we start rolling, we expect, on average 6 rolls until a 6 shows up. Once that happens, there is a 1/6 chance that we will roll once more, and a 5/6 chance that we will be, effctively, starting all over again, and so have as many additional expected rolls as when we started. As a result, we can say
$$
E=6+\frac16\cdot1+\frac56(E+1).
$$
Solving this, we find that $E = 42$.

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2023-8-5 20:07:04
Markov chains - Topics in Probability
Let $\mathbf{P}$ be the transition probability transition matrix for an absorbing Markov chain. Suppose that $\mathbf{P}$ is stated as follows\[\mathbf{P}=\left[\begin{array}c Q & R \\ \mathbf{0} & I \\ \end{array}\right]\]
such that $Q$ is the submatrix of $\mathbf{P}$ that consists of the one-step transition probabilities between transient states and $R$ is the submatrix of $\mathbf{P}$ that consists of the one-step transition probabilities from transient states into absorbing states. The fundamental matrix is $W=(I-Q)^{-1}$, which is the inverse of the matrix $I-Q$ where $I$ is the identity matrix of the same size as $Q$.

We sketch an answer to two questions.
  • Why each entry $W_{ij}$ in the fundamental matrix $W$ is the mean time the process spent in state $j$ given that the process starts in state $i$?
  • Why the matrix $W \times R$ gives the probabilities of absorption?


Note that the entries in $Q^n$, the $n$th power of the matrix $Q$, approach zero as $n$ becomes large. This is because $Q$ contains the one-step transition probabilities of the transient states (once in a transient state, the process has to leave the transient states at some point). We have the following equality.
\[W=I+Q+Q^2+Q^3+\cdots+Q^n+\cdots \tag3\]
To see the equality (3), fix transient states $i$ and $j$ with $i \ne j$. We show the following:
\[\tag4W_{ii}=1+P_{ii}+P_{ii}^2+P_{ii}^3+\cdots+P_{ii}^n+\cdots\]
\[\tag5W_{ij}=P_{ij}+P_{ij}^2+P_{ij}^3+\cdots+P_{ij}^n+\cdots\]
Suppose the process starts at state $i$. Define the indicator variables $Y_n$ and $Z_n$ for $n \ge 1$. At time $n$, if the process is in state $i$, let $Y_n=1$. Otherwise $Y_n=0$. Likewise, at time $n$, if the process is in state $j$, let $Z_n=1$. Otherwise $Z_n=0$. By definition,\[1+Y_1+Y_2+Y_3+\cdots+Y_n+\cdots\]\[Z_1+Z_2+Z_3+\cdots+Z_n+\cdots\]are the times spent in state $i$ and in state $j$, respectively. The 1 in the first random time accounts for the fact that the process is already in state $i$ initially. Because we are dealing with transient states, only a finite number of $Y_n$ and $Z_n$ can be 1’s. So these two random time variables are well defined. Each $Y_n$ is a Bernoulli random variable with $P[Y_n=1]=P_{ii}^n$. Likewise each $Z_n$ is a Bernoulli random variable with $P[Z_n=1]=P_{ij}^n$. The following gives (4) and (5).\begin{aligned} W_{ii}&=1+E[Y_1]+E[Y_2]+\cdots+E[Y_n]+\cdots \\&=1+P_{ii}+P_{ii}^2+\cdots+P_{ii}^n+\cdots \end{aligned}\begin{aligned} W_{ij}&=E[Z_1]+E[Z_2]+\cdots+E[Z_n]+\cdots \\&=P_{ij}+P_{ij}^2+\cdots+P_{ij}^n+\cdots \end{aligned}Expressing equalities (4) and (5) in matrix form gives the equality (3). The following derivation shows that $W=(I-Q)^{-1}$.
\begin{aligned} W&=I+Q+Q^2+Q^3+\cdots+Q^n+\cdots \\&=I+Q (I+Q+Q^2+Q^3+\cdots+Q^n+\cdots) \\& = I+ Q W\end{aligned}\[W-Q W=I\]\[W (I-Q)=I\]Thus the mean times spent in the transient states are obtained by taking the inverse of the matrix $I-Q$. Based on the derivation, the sum $I+Q+Q^2+Q^3+\cdots+Q^n$ for a sufficiently large $n$ would give a good approximation of the waiting time matrix $W$. Of course, computationally speaking, it is much easier to compute the inverse matrix of $I-Q$.

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2023-8-5 20:09:52
Last edited by hbghlyj at 2023-8-5 21:30:00
yoyo987654 发表于 2023-8-5 15:48
抛掷一颗4面骰子6次,求没有连续3次得到「1」的概率.

Markov Chain: flip 8 coins and get 3 consecutive heads
状态0:已掷出0个连续「1」
状态1:已掷出1个连续「1」
状态2:已掷出2个连续「1」
状态3:已掷出3个连续「1」
从状态0转移到状态0的概率为$\frac34$(非1重新开始),从状态0转移到状态1的概率为$\frac14$(多一次1).
从状态1转移到状态0的概率为$\frac34$(非1重新开始),从状态1转移到状态2的概率为$\frac14$(多一次1).
从状态2转移到状态0的概率为$\frac34$(非1重新开始),从状态2转移到状态3的概率为$\frac14$(多一次1).
只要到达状态3就会继续留在状态3(已成功掷出3个连续1),称为absorbing state.
转移矩阵$𝐏=\pmatrix{\frac34&\frac14&0&0\\
\frac34&0&\frac14&0\\
\frac34&0&0&\frac14\\
0&0&0&1}$
从状态0开始,转移6次后的概率分布
$$\pmatrix{1&0&0&0}𝐏^6=\pmatrix{369\over512&747\over4096&189\over4096&13\over256}$$
结果是$1-{13\over256}={243\over256}$

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2023-8-5 20:18:12
Last edited by hbghlyj at 2023-8-5 22:12:00Absorbing Markov chain

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-8-5 20:57:19
前段时间解过类似题:
设抛掷硬币时,得到正面的概率为56%,得到反面的概率为44%,连续抛掷1500次,出现连续七次反面的概率是多少?

见:kuing.cjhb.site/forum.php?mod=redirect&go … =11066&pid=54336

这里也可以照搬那帖的方法,比如用递推法。

设 `a_n` 为抛 `n` 次四面骰子,存在连续 3 次得到「1」的概率。

显然 `a_1=a_2=0`, `a_3=1/4^3`,数一下可知 `a_4=7/4^4`。

当 `n>4` 时,出现连续 3 次「1」这个事件包含两种情况:

(1)前 `n-1` 次内已经出现连续 3 次「1」;

(2)直至抛完最后一次才出现连续 3 次「1」。

情况(1)概率就是 `a_{n-1}`;
至于情况(2),即前 `n-4` 次内都没有出现「111」且最后 4 次为 「X111」(其中 X 为 234 之一),因此概率为 `(1-a_{n-4})\times3/4\times1/4^3`。

综上,有
\[a_n=a_{n-1}+\frac3{4^4}(1-a_{n-4}).\]

最终可算出 `a_6=13/256`,因此原题所求的没有连续 3 次得到「1」的概率就是 `243/256`。

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2023-8-5 21:38:41

相关题

抛掷一颗4面骰子n次时,首次得到连续3个「1」,求n的期望.

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2023-8-5 21:41:16
Last edited by hbghlyj at 2023-8-5 21:47:00
hbghlyj 发表于 2023-8-5 21:38
抛掷一颗4面骰子n次时,首次得到连续3个「1」,求n的期望.
设首次得到连续2个「1」的次数期望为$E_2$.
按照2#列出$E_2=4+\frac14\cdot1+\frac34(E_2+1).$
$E_2=20$对吗
设首次得到连续3个「1」的次数期望为$E_3$.
按照2#列出$E_3=E_2+\frac14\cdot1+\frac34(E_3+1).$
$E_3=84$对吗

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2023-8-5 21:48:21

相关题

抛掷一颗4面骰子$\infty$次,求没有连续3次得到「1」的概率.

10

Threads

10

Posts

110

Credits

Credits
110

Show all posts

 Author| yoyo987654 Posted at 2023-8-5 21:53:28
kuing 发表于 2023-8-5 20:57
前段时间解过类似题:

见:https://kuing.cjhb.site/forum.php?mod=redirect&goto=findpost&ptid ...
谢谢给出的详解

手机版Mobile version|Leisure Math Forum

2025-4-21 01:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list