Forgot password?
 Register account
View 304|Reply 4

几何迭代 Markov链

[Copy link]

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

hbghlyj Posted 2022-11-8 01:19 |Read mode
Last edited by hbghlyj 2022-11-18 09:41旧官网的cover image(封面图)

如何构造下面的 cover image 4 呢? 这些四边形都相似, 相邻两个四边形有一条公共边.
coverImage4[1].gif

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2022-11-10 01:08

Geogebra 复数乘法

p = (A_1 - B_0) / (A_0 - B_0)
q = (B_1 - A_1) / (B_0 - A_1)
Sequence(((p - 1) (p q)^n (A_0 - B_0) - B_0 + p ((q - 1) A_0 + B_0)) / (p q - 1), n, 2, 40)
Sequence((-B_0 + p ((q - 1) (A_0 + (p q)^n (-A_0 + B_0)) + B_0)) / (p q - 1), n, 2, 40)
1.png

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2022-11-10 01:11
Last edited by hbghlyj 2022-11-10 23:39\begin{cases}A_{n+1}=p(A_n-B_n)+B_n\\
B_{n+1}=q (B_n-A_{n+1})+A_{n+1}=B_n+(1-q)p(A_n-B_n)\end{cases}即\[\pmatrix{A_{n+1}\\B_{n+1}}=\pmatrix{p&1-p\\p-pq&1-p+pq}\pmatrix{A_n\\B_n}\]相似对角化,\[\left(
\begin{array}{cc}
1 & p-1 \\
1 & p-p q \\
\end{array}
\right)\left(
\begin{array}{cc}
1 & 0 \\
0 & p q \\
\end{array}
\right)\left(
\begin{array}{cc}
1 & p-1 \\
1 & p-p q \\
\end{array}
\right)^{-1}\]
$n$次方,\[\left(
\begin{array}{cc}
1 & p-1 \\
1 & p-p q \\
\end{array}
\right)\left(
\begin{array}{cc}
1 & 0 \\
0 & (p q)^n \\
\end{array}
\right)\left(
\begin{array}{cc}
1 & p-1 \\
1 & p-p q \\
\end{array}
\right)^{-1}\]
当$|pq|<1$时收敛到\[\left(
\begin{array}{cc}
1 & p-1 \\
1 & p-p q \\
\end{array}
\right)\left(
\begin{array}{cc}
1 & 0 \\
0 & 0 \\
\end{array}
\right)\left(
\begin{array}{cc}
1 & p-1 \\
1 & p-p q \\
\end{array}
\right)^{-1}=\left(
\begin{array}{cc}
\frac{p-p q}{1-p q} & \frac{1-p}{1-p q} \\
\frac{p-p q}{1-p q} & \frac{1-p}{1-p q} \\
\end{array}
\right)\]因此$A_n$、$B_n$收敛到同一个点 $\frac{p-p q}{1-p q}A_0+\frac{1-p}{1-p q}B_0$
将$p = \frac{A_1 - B_0}{A_0 - B_0},q = \frac{B_1 - A_1}{B_0 - A_1}$代入化简得$$\frac{A_0 B_1-A_1 B_0}{A_0-A_1-B_0+B_1}$$

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2022-11-10 01:32
Last edited by hbghlyj 2022-11-11 01:39以$(A_0,B_0)(A_1,B_1)$、$(A_0,A_1)(B_0,B_1)$为初始点会收敛到同一个点, 这个点是“顺相似中心”(两对复数的等比分点)
见Wikipedia - Spiral similarity
Solution with complex numbers
If we express \(A, B, C,\) and \(D\) as points on the complex plane with corresponding complex numbers \(a, b, c,\) and \(d\), we can solve for the expression of the spiral similarity which takes \(A\) to \(C\) and \(B\) to \(D\). Note that \(T(a) = x_0+\alpha(a-x_0)\) and \(T(b) = x_0+\alpha(b-x_0)\), so \(\frac{T(b)-T(a)}{b-a} = \alpha\). Since \(T(a) = c\) and \(T(b) = d\), we plug in to obtain \(\alpha = \frac{d-c}{b-a}\), from which we obtain\[x_0 = \frac{ad-bc}{a+d-b-c}\]
Pairs of spiral similarities
...Thus $X$ is also the center of the spiral similarity which takes $\overline {AC}$ to $\overline {BD}$.
Fundamental Theorem of Directly Similar Figures
顺相似变换基本定理

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2022-11-11 06:53
四个实数$a,b,c,d$的等比分点:
$A,B,C,D$的横坐标为$a,b,c,d$, 且$AB∥CD$, 则$AC,BD$的交点的横坐标为
\[\frac{ad-bc}{a+d-b-c}\]

Mobile version|Discuz Math Forum

2025-6-5 01:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit