brilliant wiki
Extending $n!$
While factorials are usually used with integers, they can be generalized for complex values (except negative integers) and expressed by an integral:
$$ n!=\Gamma (n+1)=\int _{ 0 }^{ \infty }{ \frac { { x }^{ n } }{ { e }^{ x } } } dx, $$
where $\Gamma(n)$ is defined as $(n-1)!$. This is also written as $\displaystyle z!=\Gamma (z+1)=\int _{ 0 }^{ \infty }{ { t }^{ z }{ e }^{ -t } } dt$.
Proof
A very nice derivation of this formula begins with the integral
$$\int { \frac { 1 }{ { e }^{ kx } } } dx=-\frac { { e }^{ -kx } }{ k } +C,$$
and hence
$$\int_{0}^{\infty} { \frac { 1 }{ { e }^{ kx } } } dx=\frac{1}{k}. $$
Then differentiate $n$ times with respect to $k$ to obtain
$$ \int_{0}^{\infty} { \frac { {(-x)}^{n} }{ { e }^{ kx } } } dx=\frac{{(-1)}^{n}n!}{{k}^{n+1}}. $$
Observe that ${(-1)}^{n}$ can be factored out from both sides, and then taking $k=1,$ we arrive at
$$ n!=\int _{ 0 }^{ \infty }{ \frac { { x }^{ n } }{ { e }^{ x } } } dx.\ _\square$$
From this integral definition, some nice properties of $\Gamma\left(\frac{n}{2}\right)$ can be derived.
First, we need to compute $\left(-\frac{1}{2}\right)!=\Gamma\left(\frac{1}{2}\right)$.
Proof
This is found through the integral$$\Gamma\left(\frac{1}{2}\right)=\intop_{t=0}^{+\infty}t^{\frac{1}{2}-1}e^{-t}dt=\intop_{t=0}^{+\infty}\frac{e^{-t}}{\sqrt{t}}dt,$$
and with $y=\sqrt{t}$, $dy=\frac{dt}{2\sqrt{t}}$, we get$$\Gamma\left(\frac{1}{2}\right)=2\intop_{y=0}^{+\infty}e^{-y^{2}}dy=\intop_{y=-\infty}^{+\infty}e^{-y^{2}}dy=\sqrt{\pi}.$$
Using this combined with $\Gamma(n+1)=n\Gamma(n),$ you can arrive at
$$\left(n-\frac{1}{2}\right)!=\sqrt{\pi}\left(\frac{1}{2}\right)\left(\frac{3}{2}\right)...\left(n-\frac{1}{2}\right)=\sqrt{\pi}\prod _{ j=1 }^{ n }\left( j-\frac { 1 }{ 2 } \right). $$
All that is left is to simplify $\prod _{ j=1 }^{ n }\left( j-\frac { 1 }{ 2 } \right)$. This is easier once you express each term as a fraction:
$$\prod _{ j=1 }^n \left( j-\frac { 1 }{ 2 } \right)= \prod _{ j=1 }^{ n }{ \frac { 2j-1 }{ 2 } } = \frac{(2n)!}{{2}^{n}\prod _{ j=1 }^{ n }{ 2j } } = \frac{(2n)!}{{4}^{n}n!}. $$
Hence, the final result for $\left(n-\dfrac{1}{2}\right)!$ is $\sqrt{\pi}\dfrac{(2n)!}{{4}^{n}n!} $. |