|
$\displaystyle \frac{\sqrt[n]{n!}}{n}=\frac{\sqrt[n]{e^{lnn!}}}{n}=\frac{\sqrt[n]{e^{\sum_{x=1}^n lnx}}}{n}$
$\displaystyle \int_1^n lnxdx=nlnn-n+1$
$\displaystyle nlnn-n+1 \le \sum_{x=1}^n lnx \le (n+1)lnn -n+1$
$\displaystyle \frac{\sqrt[n]{e^{nlnn-n+1}}}{n} \le \frac{\sqrt[n]{n!}}{n} \le \frac{\sqrt[n]{e^{(n+1)lnn-n+1}}}{n}$
$\displaystyle \frac{e^{lnn-1+\frac{1}{n}}}{n} \le \frac{\sqrt[n]{n!}}{n} \le \frac{e^{(1+\frac{1}{n})lnn-1+\frac{1}{n}}}{n}$
$\displaystyle e^{-1+\frac{1}{n}} \le \frac{\sqrt[n]{n!}}{n} \le e^{\frac{1}{n}lnn-1+\frac{1}{n}}$
$\displaystyle e^{-1} \le \frac{\sqrt[n]{n!}}{n} \le e^{-1}$ |
|