Forgot password?
 Create new account
View 138|Reply 2

[函数] $\sum_{r=0}^{n} \frac{z^{r}}{r !}$ 的零点缩放$1/n$趋于Szegő curve

[Copy link]

3152

Threads

8501

Posts

610K

Credits

Credits
66241
QQ

Show all posts

hbghlyj Posted at 2022-11-27 19:54:06 |Read mode
A Note on the Zeros of $\sum_{r=0}^{n} \frac{z^{r}}{r !}$
在本笔记中,通过初等方法证明 $\sum_{r=0}^{n} \frac{z^{r}}{r !}$ 的零点,对于足够大的 $n $,位于区域 $n>|z|>n / e^{2}$。
1. 我们首先要证明对于所有$n$,零点都在$|z|<n$。
Let $f_n(z)=\sum_{r=0}^n \frac{z^r}{r !}$, and $\phi(z)=f_n(n z)$.
Let
\[
g(z)=z^n \phi\left(\frac{1}{z}\right)=b_0+b_1 z+\cdots+b_n z^n
\]
then
\[
b_0=\frac{n^n}{n !}, \quad b_1=\frac{n^{n-1}}{(n-1) !}, \quad \ldots
\]
and, obviously,
\[
b_0=b_1>\cdots>b_n .
\]
这推出 $g(z)$ 的所有零点都位于单位圆之外(参见 Landau: Ergebnisse der Funktionentheorie,第 26 页,Eneström定理)。
证明
\[
(1-z) g(z)=b_0-\left\{\left(b_0-b_1\right) z+\left(b_1-b_2\right) z^2+\cdots+\left(b_{n-1}-b_n\right) z^n+b_n z^{n+1}\right\}
\]
因此对于单位圆 $|z| \leq 1$ 的点,不包括 $z=1$,我们有
\[
|(1-z) g(z)| > b_0-\left\{\left(b_0-b_1\right)+\left(b_1-b_2\right)+\cdots+\left(b_{n-1}-b_n\right)+b_n\right\}=0
\]
这推出 $g(z)$ 的所有零点都位于单位圆之外。
现在回到函数 $f_n(z)$,我们立即看到它的所有根都位于\begin{equation}\abs z<n\label{1}\end{equation}

2. 在一个 $f_n(z)$ 的零点 $z_0$ 处,$e^z$级数的前$n$项和为0,所以有
\[
\frac{z_0^{n+1}}{(n+1) !}+\frac{z_0^{n+2}}{(n+2) !}+\cdots=e^{z_0}
\]
由\eqref{1}有 $\left|z_0\right|<n$. 令 $\left|z_0\right|=(n+1) u_0$.
对于足够大$n$, (最后一行使用Stirling估计)\begin{aligned}
\exp \left\{-\left|z_0\right|\right\}&<\frac{\left|z_0\right|^{n+1}}{(n+1) !}+\cdots\\
&<\frac{\left|z_0\right|^{n+1}}{(n+1) !\left(1-u_0\right)} \\
&=\frac{\left[(n+1) u_0\right]^{n+1}}{[(n+1) / e]^{n+1}} \cdot \frac{1+\epsilon_n}{\sqrt{2 \pi n} \cdot\left(1-u_0\right)}
\end{aligned}
Hence
\begin{equation}\label{2·2}
{u_0 \cdot e \cdot\left(1+\epsilon_n\right)^{1 /(n+1)} \over\left\{\left(1-u_0\right) \sqrt{2 \pi n}\right\}^{1 /(n+1)}}>e^{-u_0}
\end{equation}
Now by \eqref{1} $u_0<n /(n+1)$, so that $1<\frac{1}{1-u_0}<n+1$ and
\[
1<\left(1-u_0\right)^{-1 /(n+1)}<(n+1)^{1 /(n+1)}=1+\epsilon_n^{\prime}
\]
因此从 \eqref{2·2} 我们有
\[
u_0 e^{u_0+1}>1+\epsilon_n^{\prime \prime}
\]

\[
1+u_0+\log u_0>\epsilon_n^{\prime \prime \prime}
\]
现在 $1+u_0+\log u_0$ 单调增, 有一个零点 $u_0\approx0.278465$ 在 $\frac{1}{e}>u_0>\frac{1}{e^2}$

因此, 对 $n$ 足够大, $u_0>\frac{1}{e^2}$, 所以 $n>\left|z_0\right|>\frac{n}{e^2}$ 其中 $z_0$ 是 $\sum_{r=0}^n \frac{z^r}{r !}=0$ 的根.

3152

Threads

8501

Posts

610K

Credits

Credits
66241
QQ

Show all posts

 Author| hbghlyj Posted at 2022-11-27 20:21:30
math.stackexchange.com/questions/131479
Every zero of the polynomial
$$s_n(z) = \sum_{k=0}^{n} \frac{z^k}{k!}$$
lies in the annulus $\frac{n}{e^2} < |z| < n.$

J. D. Buckholtz 证明了一个更强的结果, 在 A characterization of the exponential series, The American Mathematical Monthly 73 (1966), no. 4, part II, pp. 121–123. 即: 缩放$1/n$后的多项式 $s_n(n z)$ 没有零点在区域
$$
\left\{ z \in \mathbb{C} \,\colon \left|z e^{1-z}\right| \leq 1 \,\,\text{ and }\,\, |z| \leq 1 \right\}.
$$
As the proof is short and sweet I will include it here.

Proof:  Let $z \in \mathbb{C}$ with $|z| \leq 1$ and $\left|z e^{1-z}\right| \leq 1$.  Then
\begin{align*}
\left|1 - e^{-nz} s_n(nz)\right| &= \left|e^{-nz} \sum_{k=n+1}^{\infty} \frac{n^k z^k}{k!} \right| \\
&= \left|\left(z e^{1-z}\right)^n e^{-n} \sum_{k=n+1}^{\infty} \frac{n^k z^{k-n}}{k!} \right| \\
&\leq e^{-n} \sum_{k=n+1}^{\infty} \frac{n^k}{k!} \\
&= 1 - e^{-n} s_n(n) \\
&< 1.
\end{align*}
Having $s_n(nz) = 0$ here would contradict this inequality.

Q.E.D.

This bound is sharp in the sense that the limit points of the zeros of $s_n(n z)$ are precisely the points in the set

$$
\left\{ z \in \mathbb{C} \,\colon \left|z e^{1-z}\right| = 1 \,\,\text{ and }\,\, |z| \leq 1 \right\}.
$$

This is known as the Szegő curve.

3152

Threads

8501

Posts

610K

Credits

Credits
66241
QQ

Show all posts

 Author| hbghlyj Posted at 2022-11-27 20:50:14
1#中$1+u_0+\log u_0$的根$u_0$,
易证, Szegő curve与负实轴的交点, 即$ze^{1 - z}=-1$的根, 正是$-u_0$.

手机版Mobile version|Leisure Math Forum

2025-4-22 20:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list