Forgot password?
 Create new account
View 157|Reply 1

含n!的级数

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2023-8-8 09:53:09 |Read mode
Last edited by hbghlyj at 2023-8-8 10:08:00$$u_n=\frac{n^n}{e^nn!}$$证$\sum_{n=1}^\infty u_n$发散。
MSP674514dbc5a4fbci5f3i00004h5h8ii8e5egcibe.gif
尝试比值审敛法 \[\frac{u_{n + 1}}{u_{n}} = \frac{(n + 1)^{n + 1}}{e^{n + 1}(n + 1)!} \cdot \frac{e^{n}n!}{n^{n}}= \frac{(1 + \frac{1}{n})^{n}}{e}<1\] 趋于1,无法判断敛散性
SumConvergence[n^n/E^n/n!, n] 结果为 Untitled.gif

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2023-8-8 10:06:38
类似题
根据Stirling存在常数$c,C$
\[\frac{c}{\sqrt{n}}\le \frac{(\frac{n}{e})^n}{n!}\le \frac{C}{\sqrt{n}}.\]
因为$\sum_n \frac{1}{\sqrt{n}}$发散,所以原级数发散。

手机版Mobile version|Leisure Math Forum

2025-4-20 21:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list