Forgot password?
 Register account
View 692|Reply 4

[不等式] 求$\sum_{1\leqslant i<j\leqslant 4}(x_i+x_j)\sqrt{x_ix_j}$的最大值

[Copy link]

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2025-5-2 11:19 |Read mode
已知$x_1,x_2,x_3,x_4>0$且$x_1+x_2+x_3+x_4=1$,求$\sum_{1\leqslant i<j\leqslant 4}(x_i+x_j)\sqrt{x_ix_j}$的最大值

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2025-5-2 13:48

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2025-5-2 14:47
2# 链接白给,原来不是一类题

注意到
\[(x-y)^4\geqslant0\iff xy(x^2+y^2)\leqslant\frac{x^4+6x^2y^2+y^4}4,\]
所以
\begin{align*}
\sum_{1\leqslant i<j\leqslant4}\sqrt{x_ix_j}(x_i+x_j)&\leqslant\frac14\sum_{1\leqslant i<j\leqslant4}(x_i^2+6x_ix_j+x_j^2)\\
&=\frac34\sum_{i=1}^4x_i^2+\frac32\sum_{1\leqslant i<j\leqslant4}x_ix_j\\
&=\frac34(x_1+x_2+x_3+x_4)^2\\
&=\frac34,
\end{align*}
四数相等时取等。

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

 Author| Tesla35 Posted 2025-5-2 17:19
kuing 发表于 2025-5-2 14:47
2# 链接白给,原来不是一类题

注意到
普普通通的不等式都是奇技淫巧

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2025-5-2 21:19
要是变成五元或以上,恐怕以上方法都行不通

五元猜测 (1/8,1/8,1/8,1/8,1/2) 取等……

Mobile version|Discuz Math Forum

2025-5-31 10:40 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit