|
Author |
wanhuihua
Posted at 2021-3-15 21:42:02
Last edited by hbghlyj at 2025-4-12 04:01:09设$a,b,c,d$为正实数
求证
$$\sum\frac{b}{a}\sum {\frac{a}{b}} \geqslant \sum a \sum {\frac{1}{a}} $$
证明:
记$A = \sum a ,B = \sum {ab} ,C = \sum b cd,D = abcd$
$$\eqalign{&\sum {\frac{b}
{a}} \sum {ab = } \frac{{\sum {b^2 } cd\sum {cd} }}
{{abcd}} \geqslant \frac{{(\sum b cd)^2 }}
{{abcd}} = \frac{{C^2 }}
{D},\cr
& \sum {\frac{b}
{a}} \geqslant \frac{{C^2 }}
{{DB}},\sum {\frac{a}
{b}} \geqslant \frac{{(\sum a )^2 }}
{{\sum {ab} }} = \frac{{A^2 }}
{B}, }$$
$$\sum {\frac{b}
{a}} \sum {\frac{a}
{b}} \geqslant \frac{{C^2 A^2 }}
{{DB^2 }}\tag1$$
另外:$$\sum {\frac{b}
{a}} \sum {\frac{a}
{b}} = \frac{{\sum {b^2 } cd\sum {c^{\text{2}} ab} }}
{{(abcd)^2 }} \geqslant \frac{{(\sum {bc} )^2 }}
{{abcd}} = \frac{{B^2 }}
{D}\tag2 $$
(1)*(2)得$$\sum {\frac{b}
{a}} \sum {\frac{a}
{b}} \geqslant \frac{{CA}}
{D} = \sum a \sum {\frac{1}
{a}} $$
证毕。 |
|