Forgot password?
 Create new account
View 2943|Reply 9

[不等式] 4元不等式来自贴吧样子难度匹敌伊朗96

[Copy link]

30

Threads

52

Posts

675

Credits

Credits
675

Show all posts

wanhuihua Posted at 2019-12-14 16:25:14 |Read mode
Last edited by hbghlyj at 2025-4-12 04:01:25设$a,b,c,d$为正实数
求证:
\[\sum \frac{b}{a} \sum \frac{a}{b}\geqslant \sum a \sum \frac{1}{a}\]

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2019-12-15 16:42:20
两边展开等价于 `A+B\geqslant C+D`,其中
\begin{align*}
A&=\sum\left( \frac{bd}{a^2}+\frac{a^2}{bd} \right)=\frac{(ab+cd)(bc+da)(a^2c^2+b^2d^2)}{a^2b^2c^2d^2},\\
B&=\sum\frac{ab}{cd}=\frac{(a^2+c^2)(b^2+d^2)}{abcd},\\
C&=\sum\left( \frac ab+\frac ba \right)=\frac{(a+c)(b+d)(ac+bd)}{abcd},\\
D&=\sum\frac ac=\frac{a^2+c^2}{ac}+\frac{b^2+d^2}{bd},
\end{align*}下面证明 `A\geqslant C` 且 `B\geqslant D`,先证后者,有
\[B-D=\frac{a^2+c^2}{ac}\left( \frac{b^2+d^2}{2bd}-1 \right)+\frac{b^2+d^2}{bd}\left( \frac{a^2+c^2}{2ac}-1 \right)\geqslant0;\]再证前者,有
\[A\geqslant C\iff(ab+cd)(bc+da)(a^2c^2+b^2d^2)\geqslant abcd(a+c)(b+d)(ac+bd),\]因为 `2(a^2c^2+b^2d^2)\geqslant(ac+bd)^2`,所以只需证
\[(ab+cd)(bc+da)(ac+bd)\geqslant2abcd(a+c)(b+d),\]展开配方为
\[abcd\bigl( (a-b)^2+(c-d)^2 \bigr)+b^2c^2(d-a)^2+d^2a^2(b-c)^2\geqslant0,\]即得证。

30

Threads

52

Posts

675

Credits

Credits
675

Show all posts

 Author| wanhuihua Posted at 2019-12-15 17:27:10
看来此题要火,存在多种证明

15

Threads

948

Posts

110K

Credits

Credits
12412

Show all posts

色k Posted at 2019-12-15 18:24:50
回复 3# wanhuihua

发上来瞧瞧呗

30

Threads

52

Posts

675

Credits

Credits
675

Show all posts

 Author| wanhuihua Posted at 2019-12-15 19:56:45
回复 4# 色k

多用几次柯西就可以了,论坛和贴吧应该有人可以做出来的,过段时间再发

30

Threads

52

Posts

675

Credits

Credits
675

Show all posts

 Author| wanhuihua Posted at 2021-3-12 17:25:32
顶一下看看,柯西很美

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2021-3-12 21:37:57
那就试柯一下:

由 CS 有
\begin{align*}
\LHS&=\sum\frac ba\sum\frac bc\geqslant\left( \sum\frac b{\sqrt{ac}} \right)^2=\left( \frac{a+c}{\sqrt{bd}}+\frac{b+d}{\sqrt{ac}} \right)^2,\\
\LHS&=\sum\frac cb\sum\frac ab\geqslant\left( \sum\frac{\sqrt{ac}}b \right)^2=\left( \sqrt{bd}\left( \frac1a+\frac1c \right)+\sqrt{ac}\left( \frac1b+\frac1d \right) \right)^2,
\end{align*}两式相乘再开荒,得
\begin{align*}
\LHS&\geqslant\left( \frac{a+c}{\sqrt{bd}}+\frac{b+d}{\sqrt{ac}} \right)\left( \sqrt{bd}\left( \frac1a+\frac1c \right)+\sqrt{ac}\left( \frac1b+\frac1d \right) \right)\\
&=(a+c)\left( \frac1a+\frac1c \right)+(b+d)\left( \frac1b+\frac1d \right)+\sqrt{\frac{ac}{bd}}(a+c)\left( \frac1b+\frac1d \right)+\sqrt{\frac{bd}{ac}}(b+d)\left( \frac1a+\frac1c \right),
\end{align*}故此只需证明
\[\sqrt{\frac{ac}{bd}}(a+c)\left( \frac1b+\frac1d \right)+\sqrt{\frac{bd}{ac}}(b+d)\left( \frac1a+\frac1c \right)\geqslant(a+c)\left( \frac1b+\frac1d \right)+(b+d)\left( \frac1a+\frac1c \right),\]上式两边除以 `(a+c)(b+d)` 即
\[\sqrt{\frac{ac}{bd}}\cdot\frac1{bd}+\sqrt{\frac{bd}{ac}}\cdot\frac1{ac}\geqslant\frac1{bd}+\frac1{ac},\]也就是
\[\frac x{y^3}+\frac y{x^3}\geqslant\frac1{x^2}+\frac1{y^2},\]显然成立,即得证。

30

Threads

52

Posts

675

Credits

Credits
675

Show all posts

 Author| wanhuihua Posted at 2021-3-14 21:45:03
非常优美,又多了一个证明

30

Threads

52

Posts

675

Credits

Credits
675

Show all posts

 Author| wanhuihua Posted at 2021-3-15 21:42:02
Last edited by hbghlyj at 2025-4-12 04:01:09设$a,b,c,d$为正实数
求证
$$\sum\frac{b}{a}\sum {\frac{a}{b}}  \geqslant \sum a \sum {\frac{1}{a}} $$
证明:
记$A = \sum a ,B = \sum {ab} ,C = \sum b cd,D = abcd$
$$\eqalign{&\sum {\frac{b}
{a}} \sum {ab = } \frac{{\sum {b^2 } cd\sum {cd} }}
{{abcd}} \geqslant \frac{{(\sum b cd)^2 }}
{{abcd}} = \frac{{C^2 }}
{D},\cr
  & \sum {\frac{b}
{a}}  \geqslant \frac{{C^2 }}
{{DB}},\sum {\frac{a}
{b}}  \geqslant \frac{{(\sum a )^2 }}
{{\sum {ab} }} = \frac{{A^2 }}
{B}, }$$
$$\sum {\frac{b}
{a}} \sum {\frac{a}
{b}}  \geqslant \frac{{C^2 A^2 }}
{{DB^2 }}\tag1$$
另外:$$\sum {\frac{b}
{a}} \sum {\frac{a}
{b}}  = \frac{{\sum {b^2 } cd\sum {c^{\text{2}} ab} }}
{{(abcd)^2 }} \geqslant \frac{{(\sum {bc} )^2 }}
{{abcd}} = \frac{{B^2 }}
{D}\tag2  $$
(1)*(2)得$$\sum {\frac{b}
{a}} \sum {\frac{a}
{b}}  \geqslant \frac{{CA}}
{D} = \sum a \sum {\frac{1}
{a}} $$
证毕。

30

Threads

52

Posts

675

Credits

Credits
675

Show all posts

 Author| wanhuihua Posted at 2021-3-15 21:43:27
上面是我的证明,然而在某群发现一个更简单的证明,此题太有趣了。

手机版Mobile version|Leisure Math Forum

2025-4-21 14:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list