Forgot password?
 Register account
View 313|Reply 1

[不等式] 证明 $\frac{a^2}b+\frac{b^2}c+\frac{c^2}d+\frac{d^2}a\geqslant4$

[Copy link]

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2023-9-25 23:15 |Read mode
Last edited by kuing 2023-11-6 12:21源自知乎提问:zhihu.com/question/620765233/answer/3226492940

题:若 a,b,c,d 为正实数且 $a^2+b^2+c^2+d^2=4$ ,证明: $\frac{a^2}b+\frac{b^2}c+\frac{c^2}c+\frac{d^2}a\geqslant4$ .

首先由均值不等式 \begin{align*}
a^2b^2+b^2c^2+c^2d^2+d^2a^2&=(a^2+c^2)(b^2+d^2)\\[1ex]
&\leqslant\frac{(a^2+b^2+c^2+d^2)^2}4\\[1ex]
&=4,
\end{align*} 再由赫尔德不等式 \begin{align*}
&\quad\,\left(\frac{a^2}b+\frac{b^2}c+\frac{c^2}d+\frac{d^2}a\right)^2\big(a^2b^2+b^2c^2+c^2d^2+d^2a^2\big)\\[1ex]
&\geqslant\left(\sqrt[3]{a^6}+\sqrt[3]{b^6}+\sqrt[3]{c^6}+\sqrt[3]{d^6}\right)^3=4^3,
\end{align*} 所以 \begin{align*}
\frac{a^2}b+\frac{b^2}c+\frac{c^2}d+\frac{d^2}a&\geqslant\sqrt{\frac{(a^2+b^2+c^2+d^2)^3}{(a^2+b^2+c^2+d^2)^2/4}}\\[1ex]
&=\sqrt{4(a^2+b^2+c^2+d^2)}\\[1ex]
&=4.
\end{align*} 当且仅当 $a=b=c=d=1$ 时取得等号.
isee=freeMaths@知乎

0

Threads

412

Posts

6093

Credits

Credits
6093
QQ

Show all posts

爪机专用 Posted 2023-9-26 00:03
Last edited by kuing 2023-11-6 12:18老题了😏见《撸题集》P.667~668 题目 5.1.69
I am majia of kuing

Mobile version|Discuz Math Forum

2025-6-5 01:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit