Forgot password?
 Create new account
View 139|Reply 4

一道三元代数求值题

[Copy link]

410

Threads

1044

Posts

110K

Credits

Credits
11577

Show all posts

lemondian Posted at 2023-12-28 08:57:41 |Read mode
设$a,b,c$为互不相等的实数满足$abc=\frac{7}{8}$,且$a^2+bc-ab=b^2+ca-bc=c^2+ab-ca$,求$a^4+b^4+c^4$的值。

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2023-12-28 15:04:31
Last edited by kuing at 2023-12-28 15:15:00
\begin{align*}
x_1&=a^2+bc-ab,\\
x_2&=b^2+ca-bc,\\
x_3&=c^2+ab-ca,
\end{align*}
则可以验证恒等式
\[(a^2+b^2+c^2)^2-3(a^3b+b^3c+c^3a)
=\frac{(x_1-x_2)^2+(x_2-x_3)^2+(x_3-x_1)^2}2,\]
由条件上式为零,即 `a`, `b`, `c` 满足著名的 Vasc 不等式的(除 `a=b=c` 外的)取等条件,熟知为
\[a:b:c=\sin^2\frac{4\pi}7:\sin^2\frac{2\pi}7:\sin^2\frac\pi7,\]
及其轮换,下略。😁

410

Threads

1044

Posts

110K

Credits

Credits
11577

Show all posts

 Author| lemondian Posted at 2023-12-28 15:25:39
kuing 发表于 2023-12-28 15:04

\begin{align*}
x_1&=a^2+bc-ab,\\
“熟知...”后面是怎么来的呀?
,关键我不“熟知”

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2023-12-28 15:51:04
lemondian 发表于 2023-12-28 15:25
“熟知...”后面是怎么来的呀?
,关键我不“熟知”
我只是纯粹记得这经典结论😁具体推导其实我也不知道
2# 意在指出这道题有这么个背景而已,有空再看看咋推吧

410

Threads

1044

Posts

110K

Credits

Credits
11577

Show all posts

 Author| lemondian Posted at 2023-12-29 15:56:54
kuing 发表于 2023-12-28 15:51
我只是纯粹记得这经典结论😁具体推导其实我也不知道
2# 意在指出这道题有这么个背景而已,有空再看看咋推 ...
1#结果是多少呢?

手机版Mobile version|Leisure Math Forum

2025-4-20 22:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list