Forgot password?
 Create new account
View 166|Reply 3

[数论] 整系数多项式的结式的系数是整数

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-2-11 21:01:36 |Read mode
整系数多项式$f(x)=\prod_{i=1}^n(x-\alpha_i),\alpha_i\in\Bbb C$与$g(x)=\prod_{j=1}^m(x-\beta_j),\beta_j\in\Bbb C$
多项式$$h(x)=\operatorname{Resultant}(f(t),g(x-t),t)=\prod_{i=1}^n\prod_{j=1}^m(x-(\alpha_i+\beta_j))$$可以表示为$x$的整系数多项式排成的行列式。
因此 $h(x)$ 的系数都是整数。

来源:  代数整数之和为代数整数
MathWorld
Given $p$ and $q$, then
$$h(x)=\rho(q(t),p(x-t))        
\tag7$$
is a polynomial of degree $mn$, having as its roots all sums of the form $\alpha_i+\beta_j$.

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2023-2-11 21:07:15

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2023-2-11 21:15:12
MathWorld:
Amazingly, the resultant is also given by the determinant of the corresponding Sylvester matrix.

设$p$和$q$为两个多项式,次数分别为$m$和$n$。因此:
\[p(z)=p_0+p_1 z+p_2 z^2+\cdots+p_m z^m,\;q(z)=q_0+q_1 z+q_2 z^2+\cdots+q_n z^n.\]
于是,与$p$和$q$相关的西尔维斯特矩阵,就是通过以下方法得到的矩阵$(n+m)\times(n+m)$:
第一行为:
\[\begin{pmatrix} p_m & p_{m-1} & \cdots & p_1 & p_0 & 0 & \cdots & 0 \end{pmatrix}.\]
第二行是第一行往右移一列;第二行第一列的元素是零。
下面的(n-2)行也是用这种方法得出,每次都往右移一列。
第(n+1)行为:
\[\begin{pmatrix} q_n & q_{n-1} & \cdots & q_1 & q_0 & 0 & \cdots & 0 \end{pmatrix}.\]
余下的行仍然是每次都往右移一列。
因此,如果$m=4$和$n=3$,则矩阵为:
\[S_{p,q}=\begin{pmatrix}
p_4 & p_3 & p_2 & p_1 & p_0 & 0 & 0 \\
0 & p_4 & p_3 & p_2 & p_1 & p_0 & 0 \\
0 & 0 & p_4 & p_3 & p_2 & p_1 & p_0 \\
q_3 & q_2 & q_1 & q_0 & 0 & 0 & 0 \\
0 & q_3 & q_2 & q_1 & q_0 & 0 & 0 \\
0 & 0 & q_3 & q_2 & q_1 & q_0 & 0 \\
0 & 0 & 0 & q_3 & q_2 & q_1 & q_0 \\
\end{pmatrix}.\]从 Teaching materials for "Topics in number theory" 找到The Sylvester resultant (On the resultant of a pair of bivariate polynomials).

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2023-2-11 21:21:59
用近代数学观点研究初等数学 梅向明 人民教育出版社 p66
Screenshot 2023-02-11 at 10-01-02 $ℂ^2$去掉对角线的连通分支 - 高等数学讨论 - 悠.png

手机版Mobile version|Leisure Math Forum

2025-4-21 14:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list