Forgot password
 Register account
View 377|Reply 2

[不等式] 懒得翻旧帖,再写一次熟知的 `\sum ab^2+abc\le4/27`

[Copy link]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-12-8 14:37 |Read mode
Last edited by hbghlyj 2025-6-8 23:12
命题:`a`, `b`, `c\geqslant0`,则有
\[ab^2+bc^2+ca^2+abc\leqslant\frac4{27}(a+b+c)^3.\]
证:由轮换对称性,只需考虑两种情况:`a\geqslant b\geqslant c` 和 `a\leqslant b\leqslant c`。

若 `a\geqslant b\geqslant c`,则 `ab\geqslant ac\geqslant bc`;
若 `a\leqslant b\leqslant c`,则 `ab\leqslant ac\leqslant bc`。

可见两种情况下 `\{a,b,c\}` 与 `\{ab,ac,bc\}` 都是同序的,因此由“同序和 ≥ 乱序和”得
\[a\cdot ab+b\cdot ac+c\cdot bc\geqslant a\cdot ac+b\cdot ab+c\cdot bc,\]
也就是
\[ab^2+bc^2+ca^2\leqslant b(a^2+ac+c^2),\]
所以
\begin{align*}
ab^2+bc^2+ca^2+abc&\leqslant b(a+c)^2\\
&=\frac12\cdot2b\cdot(a+c)\cdot(a+c)\\
&\leqslant\frac12\left(\frac{2b+a+c+a+c}3\right)^3\\
&=\frac4{27}(a+b+c)^3.
\end{align*}

3218

Threads

7837

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-12-9 21:50
\begin{multline*}(a+b+4c) \cdot [4(a+b+c)^3-27(a^2b+b^2c+c^2a+abc)]\\=(b+c-2a)^2(a-2b+4c)^2+9ab(a-2b+c)^2+9bc(a+b-2c)^2\\\ge 0\end{multline*}Generalization

19

Threads

44

Posts

0

Reputation

Show all posts

O-17 posted 2023-4-2 07:51
利用轮换对称性配方:
不妨设 $c$ 是中位数
$$
\frac{4}{27}\left(\sum a\right)^3-\sum ab^2-abc=\frac1{27}(4a+c)(a+b-2c)^2+\frac4{27}b(a-b)^2+\frac{11}{27}b(a-c)(c-b)\geqslant0~.\square
$$
升次配方:
$$
\frac{4}{27}\left(\sum a\right)^3-\sum ab^2-abc=\frac{\sum(2a-b-c)^2(a+4b-2c)^2+18\sum ab(2a-b-c)^2}{162\sum a}\geqslant0~.\square
$$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 12:00 GMT+8

Powered by Discuz!

Processed in 0.019206 seconds, 46 queries