Forgot password?
 Create new account
View 195|Reply 11

[函数] 不会的解方程组 $x+\frac1{x^3}=2y$,$y+\frac1{y^3}=2z$…

[Copy link]

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2023-8-25 11:59:19 |Read mode
Last edited by isee at 2023-8-25 14:28:00源自 7 月份知乎付费频道

:若实数 $x,y,z,w$ 满足 $x+\dfrac1{x^3}=2y$,$y+\dfrac1{y^3}=2z$,$z+\dfrac1{z^3}=2w$,$w+\dfrac1{w^3}=2x$,求 $x,y,z,w$ 的值.

isee=freeMaths@知乎

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-8-25 14:14:05
Last edited by Czhang271828 at 2023-8-25 16:01:00注意到解同号且关于 $\pm $ 对称, 从而不妨设 $x,y,z,w>0$. 注意到
$$
x^2+x^{-2}=2xy\geq 2,
$$
从而相邻字母乘积大于等于 $\color{red}1$. 注意到
$$
\begin{align*}
2(y+z)&=(x+ y)+\dfrac{y^3+x^3}{x^3y^3}=(x+y)\cdot \dfrac{x^3y^3+x^2-xy+y^2}{x^3y^3},\\[8pt]
2(y-z)&=(x- y)+\dfrac{y^3-x^3}{x^3y^3}=(x-y)\cdot \dfrac{x^3y^3-x^2-xy-y^2}{x^3y^3}.
\end{align*}
$$
从而
$$
\prod\left(\dfrac{x^3y^3-xy-x^2-y^2}{x^3y^3}\right)=\prod\left(\dfrac{x^3y^3-xy+x^2+y^2}{x^3y^3}\right)=16.
$$
根据 $xy\geq1$ 得 $x^3y^3-xy\geq 0$, 从而
$$
|x^3y^3-xy-(x^2+y^2)|\leq |x^3y^3-xy+(x^2+y^2)|.
$$
取等当且仅当 $xy=yz=zx=xw=1$. 此时 $x^2+x^{-2}=2xy=2$, 故 $x=1$.

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-8-25 14:21:05
建议加个"知乎付费频道"的链接, 以及分类可以选 [函数] 或者 [不等式].

Comment

容我消化一下,谢谢~~链接加了,不知能否打开.  Posted at 2023-8-25 14:27

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-8-25 14:27:38
付费频道是啥?

PS、标签不对,这种并不属于“不定方程”

Comment

就是“付费咨询” https://www.zhihu.com/consult ; 改成 分式方程 了  Posted at 2023-8-25 14:30

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-8-25 14:29:06
打不开,显示“看起来,你没有权限哦~”

进入楼上点评里的链接,显示:
开通咨询服务
恭喜获得付费咨询服务开通资格,点击下方按钮了解并申请加入
申请成为答主

点“申请成为答主”之后,进去里面还要考试?
算了,有空再说

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2023-8-25 14:33:44
kuing 发表于 2023-8-25 14:29
打不开,显示“看起来,你没有权限哦~”

进入楼上点评里的链接,显示:
哈哈哈哈哈,开呗,如果不想时常被打扰,又(他人)真的有难解之疑,建议单价高点~
isee=freeMaths@知乎

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-8-25 14:48:47
类似地, 令 $f(x)=\dfrac{x+x^{-3}}{2}$, 记 $f_{1}(x)=f(x)$, $f_{n+1}(x)=f_n(f(x))$, 则对任意 $n$, $f_n(x)=x$ 的解只有 $\pm 1$.

Rate

Number of participants 1威望 +2 Collapse Reason
isee + 2

View Rating Log

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2023-8-25 14:58:28
Czhang271828 发表于 2023-8-25 14:48
类似地, 令 $f(x)=\dfrac{x+x^{-3}}{2}$, 记 $f_{1}(x)=f(x)$, $f_{n+1}(x)=f_n(f(x))$, 则对任意 $n$, $f_ ...
能不能将2#解法截图截给曾经的向我付费的提问者?
isee=freeMaths@知乎

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-8-25 15:11:56 From the mobile phone
isee 发表于 2023-8-25 14:58
能不能将2#解法截图截给曾经的向我付费的提问者?
记得附上论坛链接即可

Comment

十分感谢!!!那是自然的  Posted at 2023-8-25 15:43

手机版Mobile version|Leisure Math Forum

2025-4-21 01:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list