Forgot password
 Register account
View 4|Reply 1

[数论] 一族等差数列覆盖了整数集,则存在子集使得公差倒数之和为正整数

[Copy link]

3251

Threads

7871

Posts

52

Reputation

Show all posts

hbghlyj posted 2025-7-29 21:59 |Read mode
设有一族等差数列 $(a_i + b_i \mathbb{Z})_{i=1}^n$ 覆盖了 $\mathbb{Z}$,即 $\bigcup_{i=1}^n (a_i + b_i \mathbb{Z}) = \mathbb{Z}$。证明存在子集 $I \subset \{1,2,\ldots,n\}$,使得
$$
\sum_{i \in I} \frac{1}{b_i}
$$
是一个正整数。

3251

Threads

7871

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2025-7-29 21:58
设 $L = \mathrm{lcm}(b_1, b_2, \ldots, b_n)$。考虑以下和:
$$
S = \sum_{j=0}^{L-1} \prod_{i=1}^n \left(1 - e^{2\pi i \frac{j-a_i}{b_i}}\right)
$$
由于覆盖性质,对于每个 $j$,存在 $k$ 使得 $j \equiv a_k \pmod{b_k}$,从而对应因子为 $0$,故 $S=0$。

展开乘积:
$$
S = \sum_{I \subseteq \{1,\ldots,n\}} (-1)^{|I|} \left(\prod_{i \in I} e^{-2\pi i \frac{a_i}{b_i}}\right) \left(\sum_{j=0}^{L-1} e^{2\pi i j \sum_{i \in I} \frac{1}{b_i}}\right)
$$
内部求和:设 $\sigma_I = \sum_{i \in I} \frac{1}{b_i}$,若 $\sigma_I \in \mathbb{Z}$ 则为 $L$,否则为 $0$。

于是:
$$
0 = S = L \sum_{\sigma_I \in \mathbb{Z}} (-1)^{|I|} e^{-2\pi i \sum_{i \in I} \frac{a_i}{b_i}}
$$
分离空集项(贡献 $L$),除以 $L$ 得:
$$
1 + \sum_{I \neq \emptyset, \sigma_I \in \mathbb{Z}} (-1)^{|I|} e^{-2\pi i \sum_{i \in I} \frac{a_i}{b_i}} = 0
$$
若无非空 $I$ 满足 $\sigma_I \in \mathbb{Z}$,则 $1=0$,矛盾。故存在这样的非空 $I$,且 $\sum_{i \in I} \frac{1}{b_i}$ 为正整数。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-31 05:58 GMT+8

Powered by Discuz!

Processed in 0.013312 seconds, 29 queries