Forgot password
 Register account
View 11|Reply 1

[几何] 圆上点距离乘积的最大值下界

[Copy link]

3269

Threads

7881

Posts

52

Reputation

Show all posts

hbghlyj posted 2025-8-4 11:12 |Read mode
设单位圆周上有$n$个不同的点$z_1, z_2, \dots, z_n$
证明:存在圆周上一点$P$,使得$$\prod_{i=1}^n |P - z_i| > 1$$
解法
全纯函数$f(z) = \prod_{i=1}^n (z_i - z)$非恒定,由最大模原理,在单位圆盘上$|f|$的最大值在边界上一点$P$达到
$$|f(P)|=\max_{|z|\le1}|f(z)|>|f(0)|=1$$

3269

Threads

7881

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2025-8-4 11:24
@Aryabhata证明了更强的结论:存在圆周上一点$P$使得$\prod_{i=1}^n |P - z_i| \ge 2$.

通过旋转圆周,使得$(-1)^n \prod_{j=1}^n z_j = 1$.

令$f(z) = \prod_{j=1}^n (z - z_j) = z^n + c_{n-1} z^{n-1} + \cdots + c_1 z + 1$,则从$z$到$z_j$的距离乘积为$|f(z)|$.

令$\omega_j$为$n$个$n$次单位根。由于对$0<k < n$,$\sum_{j=1}^n \omega_j^k = 0$,有\begin{align*}
\sum_{j=1}^n f(\omega_j) &= \sum_{j=1}^n \left( \omega_j^n + c_{n-1} \omega_j^{n-1} + \cdots + c_1 \omega_j + 1\right)\\
&= \sum_{j=1}^n 1 + c_{n-1} \sum_{j=1}^n \omega_j^{n-1} + \cdots + c_1 \sum_{j=1}^n \omega_j + \sum_{j=1}^n 1\\&=2n
\end{align*}
因此$\sum_{j=1}^n |f(\omega_j)| \ge \left| \sum_{j=1}^n f(\omega_j) \right| = 2n$,故存在某个$j$使得$|f(\omega_j)| \ge 2$.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-8-4 18:48 GMT+8

Powered by Discuz!

Processed in 0.022051 seconds, 31 queries