Forgot password
 Register account
View 1395|Reply 3

求矩阵的幂

[Copy link]

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-6-21 16:18 |Read mode
Last edited by hbghlyj 2025-3-21 05:37设矩阵$A=\begin{pmatrix}
1 & 4 &2\\
0 & -3& 4\\
0&4&3
\end{pmatrix} $,求$A^k(k\inN_+)$.

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2014-6-21 16:55
$\lambda=1,5,-5$

$\begin{pmatrix} 1 & 4 & 2 \\ 0 & -3 & 4 \\ 0 & 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & -2 \\ 0 & 2 & 1 \end{pmatrix} =\begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & -2 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & -5 \end{pmatrix}$

$\begin{pmatrix} 1 & 4 & 2 \\ 0 & -3 & 4 \\ 0 & 4 & 3 \end{pmatrix}^k = \begin{pmatrix} 1 & 2(5^{k-1})+2(-5)^{k-1} & 4(5^{k-1})-(-5)^{k-1}-1 \\ 0 & 5^{k-1}-4(-5)^{k-1} & 2(5^{k-1})+2(-5)^{k-1} \\ 0 & 2(5^{k-1})+2(-5)^{k-1} & 4(5^{k-1})-(-5)^{k-1} \end{pmatrix}$

84

Threads

2340

Posts

4

Reputation

Show all posts

original poster 其妙 posted 2014-6-21 18:16
回复 2# tommywong
啥子原理哟!

0

Threads

15

Posts

0

Reputation

Show all posts

LLLYSL posted 2014-7-1 07:05
相似于一个对角阵之后的性质

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 11:54 GMT+8

Powered by Discuz!

Processed in 0.014326 seconds, 34 queries