Forgot password?
 Register account
View 377|Reply 1

矩阵的特征值

[Copy link]

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

hbghlyj Posted 2022-7-9 04:50 |Read mode
Last edited by hbghlyj 2022-10-18 21:15Matrix Analysis, by Horn, Johnson, page 39
freakedsmiley[1].png

Mathematica:
freakedsmiley[1].png
In[1]:= J[n_]:=Table[Boole[i==j||i==1||j==1||i==n||j==n],{i,n},{j,n}]
In[2]:= Table[Simplify[CharacteristicPolynomial[J[n],x]],{n,3,10}]
Out[2]= {-((-3+x) x^2),x (2+x-4 x^2+x^3),-(-1+x)^2 x (-4-3 x+x^2),(-1+x)^3 x (-6-3 x+x^2),-(-1+x)^4 x (-8-3 x+x^2),(-1+x)^5 x (-10-3 x+x^2),-(-1+x)^6 x (-12-3 x+x^2),(-1+x)^7 x (-14-3 x+x^2)}

当$n≥5$时,如何证明$x(x-1)^{n-3}$是CharacteristicPolynomial[J[n],x]的因式呢
freakedsmiley[1].png

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2022-7-9 05:06
证明:
当$n≥3$时$J_n$的第一行和第$n$行相同,所以$\det J_n=0$,所以$0$是$J_n$的特征值.
当$n≥4$时$J_n-I$的第二行和第三行相同,所以$\det(J_n-I)=0$,所以$1$是$J_n$的特征值.
因为$J_n-I$的第$2,3,\dots,n-1$行相同,所以可以用第$3,\dots,n-1$行减去第$2$行得到零行,所以$\operatorname{nullity}(J_n-I)≥n-3$,即$1$的重数至少是$n-3$.

Mobile version|Discuz Math Forum

2025-6-5 02:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit