Forgot password?
 Register account
View 1154|Reply 1

求特征值

[Copy link]

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

hbghlyj Posted 2020-6-3 22:13 |Read mode
Last edited by hbghlyj 2022-10-18 21:16$A=\left(\begin{matrix}1&\cdots&1\\⋮& &⋮\\1&\cdots&1\end{matrix} \right)_{p\times q},B=\left(\begin{matrix}1&\cdots&1\\⋮& &⋮\\1&\cdots&1\end{matrix} \right)_{q\times p},$求$\left(\begin{matrix}O&A\\B&O\end{matrix} \right)$的特征值是$\pm\sqrt{pq},0$

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2021-1-8 21:00
Last edited by Czhang271828 2021-1-12 00:11特征值$0$的重数(multiplicity)为$p+q-2$,因为$\mathrm{rank}(\left(\begin{array}{cc}O&A\\B&O\end{array}\right))=p+q-2$。设另外两个特征值为$\lambda_1$、$\lambda_2$,由相似矩阵迹相等知$\lambda_1+\lambda_2=0$。而$\det(A^TA)=-\sum_{i\neq j}A_{ij}A_{ji}=-pq$,故$\lambda_{1,2}=\pm\sqrt{pq}$。

最近在看谱图论,这题就是求 the complete bipartite graph $K_{p,q}$ 的 spectrum 了。

The complete bipartite graph 构造简单:设$V_1$和$V_2$分别为含有$p$和$q$个点(vertices)的集合,作出所有以两集合点为端点的边(Edges)即可,共$pq$条。如上所构造出的边和点构成的图即是$K_{p,q}$ (the complete bipartite graph)。

spectrum 是指图对应的邻接矩阵(adjacency matrix)的特征值和重数。邻接矩阵$A$元素为 $0$ 和 $1$,$a_{ij}=1$当且仅当编号为$i$和$j$的点由边相连(反之$a_{ij}=0$)。因此 $\left(\begin{array}{cc}O&A\\B&O\end{array}\right)$ 是$K_{p,q}$的邻接矩阵。$K_{p,q}$ 的图谱为$(0^{(p+q-2)},\sqrt{pq}^{(1)},-\sqrt{pq}^{(1)})$。

Rate

Number of participants 1威望 +3 Collapse Reason
青青子衿 + 3 厉害!

View Rating Log

Mobile version|Discuz Math Forum

2025-6-5 07:37 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit