Forgot password?
 Create new account
View 100|Reply 1

实系数三次方程的虚根模长为1的条件

[Copy link]

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2022-8-13 10:05:13 |Read mode
Last edited by hbghlyj at 2024-12-17 19:43:00实系数三次方程$z^3 +bz +c=0$有一个实根和两个虚根, 且虚根模长为1, 求$b,c$需满足的条件.
设$|z|=1$, 则$\bar z=\frac1z$, 所以$cz^3+bz^2+1=0$.
从$\cases{z^3 +bz +c=0\\cz^3+bz^2+1=0}$消去$z$得$b=1-c^2$,代入$\Delta=-4b^3-27c^2<0$得$-2 < c < 2$.
所以$b,c$需满足的条件为$\begin{cases}-2 < c < 2\\b=1-c^2\end{cases}$

Mathematica验证一下:
  1. c = RandomReal[{-2, 2}];
  2. b = 1 - c^2;
  3. Abs[z] /. Solve[z^3 + b z + c == 0, z]
Copy the Code

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2022-8-13 10:45:40
比1#更简洁的做法: 三个根的模长之积为$|c|$, 两个虚根模长为1, 所以那个实根的模长为$|c|$.
如果那个实根是$c$,代入得$c^3+bc+c=0$,即$b=-1-c^2$,
代入$\Delta=-4b^3-27c^2<0$得$\left(c^2+4\right) \left(2 c^2-1\right)^2<0$无解.
如果那个实根是$-c$,代入得$-c^3-bc+c=0$,即$b=1-c^2$,
代入$\Delta=-4b^3-27c^2<0$得⋯后同1#

手机版Mobile version|Leisure Math Forum

2025-4-21 01:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list