Forgot password?
 Create new account
View 243|Reply 7

$\mathbb{R}$ 中的二进制有限小数是稠密的

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-12-15 21:20:39 |Read mode
Last edited by hbghlyj at 2022-12-19 00:54:00How can we show that the dyadic rationals are dense in $\mathbb R$?
只需证明集合 $\left\lbrace \frac{m}{2^n}:m\in \mathbb{N}\cup\lbrace 0 \rbrace,n\in\mathbb{N},\ 0\leq m \leq 2^n \right\rbrace$ 在 $[0,1]$ 中是稠密的,然后就能扩展到整个 $\mathbb{R}$。
设 $\epsilon >0$ 和 $x\in[0,1]$。根据阿基米德性质,存在 $n\in\mathbb{N}$ 使得 $\frac{1}{2^n}<\epsilon$。
设 $m=\lfloor x\cdot2^n \rfloor$。那么显然$0\leq m \leq 2^n$。
根据 Floor 函数的性质,我们有 $$m=\lfloor x\cdot2^n \rfloor \leq x\cdot2^n \leq m+1=\lfloor x\cdot2^n \rfloor+1 $$
即 $$ \frac{m}{2^n}\leq x\leq \frac{m+1}{2^n} $$
即 $$ 0\leq x-\frac{m}{2 ^n}\leq \frac{1}{2^n} <\epsilon $$
这正是我们要证明的。

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2022-12-15 21:25:57
The complement of $\mathbb Q_d$ is also dense in $\mathbb R$. Generally, removing any countable points from $ℝ$, the remaining set will be dense in $ℝ$.

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2022-12-15 23:37:52
Last edited by hbghlyj at 2022-12-19 11:38:00集合 $\left\lbrace \frac{m}{2.5^n}:m\in \mathbb{N}\cup\lbrace 0 \rbrace,n\in\mathbb{N},\ 0\leq m \leq 2^n \right\rbrace$ 只在 0 一点处稠密.
证明:
$\frac{m}{2.5^n}\le0.8^n$, 从而$[0.8^n,1]$中只有有限个点, 因此该集合只在 0 一点处稠密.

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2022-12-17 15:51:19
hbghlyj 发表于 2022-12-15 23:37
集合 $\left\lbrace \frac{m}{2.5^n}:m\in \mathbb{N}\cup\lbrace 0 \rbrace,n\in\mathbb{N},\ 0\leq m \le ...
$(0.8,1)$ 直接空着啊. 归纳知该集合只在 $0$ 一点处稠密.

Comment

已修改:-)  Posted at 2022-12-19 07:53

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2022-12-19 07:43:28
类似1#可证
集合 $\left\lbrace \frac{m}{2.5^n}:m\in \mathbb{N}\cup\lbrace 0 \rbrace,n\in\mathbb{N},\ 0\leq m \leq 2.5^n \right\rbrace$ 在 $[0,1]$ 中是稠密的

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2022-12-19 14:40:47
hbghlyj 发表于 2022-12-15 23:37
集合 $\left\lbrace \frac{m}{2.5^n}:m\in \mathbb{N}\cup\lbrace 0 \rbrace,n\in\mathbb{N},\ 0\leq m \le ...
lz 要不再看看? $[0.64,1]$ 中有且仅有有限个点, $[0.8^n,1]$ 亦然. 从而只有 $0$ 处稠密.

Comment

终于明白了 已修改 😅  Posted at 2022-12-19 17:16
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

手机版Mobile version|Leisure Math Forum

2025-4-21 14:28 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list