Forgot password?
 Create new account
View 174|Reply 1

[几何] 积为1的n个单位复数 的平均的集合为 圆内摆线

[Copy link]

3151

Threads

8499

Posts

610K

Credits

Credits
66225
QQ

Show all posts

hbghlyj Posted at 2024-4-3 18:02:14 |Read mode
Last edited by hbghlyj at 2024-12-23 00:03:00$z_1,z_2,\dots,z_{n-1}$为任意单位复数,
$$z=\frac{1}{n}\left(z_{1}+z_{2}+\dots+z_{n-1}+\frac{1}{z_{1} z_{2}\dots z_{n-1}}\right)$$的集合为$n:1$圆内摆线的内部。

当$z_1=z_2=\dots=z_{n-1}$时$z=\frac1n((n-1)z_1+\frac1{z_1^{n-1}})$
Mc_Deltoid[1].gif

3151

Threads

8499

Posts

610K

Credits

Credits
66225
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-23 07:58:30
圆内摆线的极坐标方程$\Big((b-a)\cos(t)+a\cos \left({\frac {b-a}{a}}t\right),(b-a)\sin(t)-a\sin \left({\frac {b-a}{a}}t\right)\Big)$
取$b=1,a=\frac1n$,$\Big((1-\frac1n)\cos(t)+\cos \left((1-\frac1n)t\right),(1-\frac1n)\sin(t)-\sin \left((1-\frac1n)t\right)\Big)$
用复数写成:$z=\frac1n((n-1)z_1+\frac1{z_1^{n-1}})$,$|z_1|=1$.

手机版Mobile version|Leisure Math Forum

2025-4-21 21:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list