Forgot password?
 Create new account
View 133|Reply 1

[几何] $\frac13\left(z_{1}+z_{2}+\frac{1}{z_{1} z_{2}}\right)$的集合为三尖内摆线的内部

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-3-15 18:47:58 |Read mode
Last edited by hbghlyj at 2024-12-22 23:55:00$z_1,z_2$为单位复数, 则
$$X+i Y=\frac{1}{3}\left(z_{1}+z_{2}+\frac{1}{z_{1} z_{2}}\right)$$的集合为三尖内摆线 deltoid 的内部。
例如 $z_1=z_2=1\implies X+iY=1$
$z_1=z_2=-1\implies X+iY=-\frac13$

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-23 07:54:21
证明
2 Special unitary group SU(3)
为确定边界曲线$(X_b,Y_b)$,令偏导数为0:${∂(X + i Y )\over ∂z_1} = 0\Rightarrow z_2 = z^{−2 }_1$。回代得:$$3\left(X_{b}+i Y_{b}\right)=2 z_{1}+z_{1}^{-2}=2 \cos ^{2} \theta+2 \cos \theta-1+2 i(1-\cos \theta) \sin \theta$$其中 $θ$ 从 $0$ 到 $2π$。
尖点为单位立方根$(−1 ± i√3)/2$,这显然对应于紧复 Lie 群 $SU(3)$ 的中心:$Z(SU(3)) = \mathbb Z_3$
消去$\theta$得$X+iY$的集合为单位圆内的四次曲线的内部
$$(1+3 X)(1-X)^{3}-6 Y^{2}\left(1+4 X+X^{2}\right)-3 Y^{4} \geq 0$$
计算其他几何量

面积$$\Omega_{3}=-2 \int_{0}^{\pi} d \theta \frac{d X_{b}}{d \theta} Y_{b}=\frac{2 \pi}{9}$$边界曲线的长度
$$L_{3}=6 \int_{0}^{\pi / 3} d \theta \sqrt{\left(\frac{d X_{b}}{d \theta}\right)^{2}+\left(\frac{d Y_{b}}{d \theta}\right)^{2}}=\frac{16}{3}$$区域中最大圆的半径即 $X^2_b + Y^2_b = (5 + 4\cos 3θ)/9$ 的最小值很容易发现为$R_{3}=\frac{1}{3}$.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list