Forgot password?
 Create new account
View 1357|Reply 2

摆线演示

[Copy link]

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2017-12-26 14:49:49 |Read mode
  1. R := 4;
  2. Manipulate[
  3. Show[ParametricPlot[{\[Alpha] R + R Cos[-(\[Pi]/2) - \[Alpha]],
  4.      R + R Sin[-(\[Pi]/2) - \[Alpha]]}, {\[Alpha], 0, 4 \[Pi]}] //
  5.    Evaluate,
  6.   Graphics[{Circle[{\[Alpha] R, R}, R], Red, Thick,
  7.     Line[{{\[Alpha] R + R Cos[-(\[Pi]/2) - \[Alpha]],
  8.        R + R Sin[-(\[Pi]/2) - \[Alpha]]}, {\[Alpha] R, R}}],
  9.     PointSize[Large], Pink,
  10.     Point[{\[Alpha] R + R Cos[-(\[Pi]/2) - \[Alpha]],
  11.       R + R Sin[-(\[Pi]/2) - \[Alpha]]}]}]], {\[Alpha], 0, 4 \[Pi]}]
Copy the Code
a.gif
转自:math.org.cn/forum.php?mod=redirect&goto=f … 37985&pid=174408
PS、该帖“板凳”的计算方法也是经典。

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2017-12-26 23:09:46
的确是厉害。。。。。

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2018-1-13 02:26:12
那边将要关闭了,把“板凳”的计算方法也引用过来存个档吧……
月出孤舟寒  发表于 2017-11-18 17:38:37
QQ截图20180113022432.jpg
从运动学的角度来做无需写出摆线方程

如图,假设半径为 $R$ 的圆沿直线做无滑滚动,转动角速度为 $\omega $

由于是无滑,所以 $P$ 点速度 $\upsilon \bot PB$ 从而 $\upsilon=\omega\overline{PB} =\omega 2R\sin \frac{\theta}{2}$

从而 $\mathrm{d}s=\upsilon\mathrm{d}t=2\omega R\sin \frac{\theta}{2}\mathrm{d}t=2R\sin \frac{\theta}{2}\mathrm{d}\theta$

所以一轮摆线的长度就是 $\int_0^{2\pi}2R\sin \frac{\theta}{2}\mathrm{d}\theta=8R$

手机版Mobile version|Leisure Math Forum

2025-4-20 22:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list