Forgot password?
 Create new account
View 3139|Reply 8

[几何] 一道几何题,潘老师的

[Copy link]

9

Threads

10

Posts

99

Credits

Credits
99

Show all posts

几何小迷 Posted 2013-7-2 14:28 |Read mode
Last edited by hbghlyj at 2025-5-21 07:12四边形ABTG、ACDE是正方形,线段BC中点K
求证 △TEK面积=△GDK面积

1

Threads

22

Posts

319

Credits

Credits
319

Show all posts

地狱的死灵 Posted 2013-7-3 01:18
把要证的面积相等转化为向量积(下面的运算都是向量),
即证KG×KD=KT×KE。
KG×KD=(KT+TG)×KD=KT×KD+BA×KD
KT×KE=KT×(KD+DE)=KT×KD+KT×CA
只要证BA×KD=KT×CA
BA×KD=BA×(KA+AD)=BA×KA-AB×AD
KT×CA=(KA+AT)×CA=KA×CA-AT×AC
把相关线段连起来,
注意到△BAK与△KAC面积相等,
所以BA×KA=KA×CA,
易证△TAC与△BAD面积相等,
所以AB×AD=AT×AC……

690

Threads

110K

Posts

910K

Credits

Credits
91263
QQ

Show all posts

kuing Posted 2013-7-3 15:12
Last edited by hbghlyj at 2025-5-21 07:25大概这样子吧

84

Threads

2342

Posts

110K

Credits

Credits
13106

Show all posts

其妙 Posted 2013-7-4 22:10
Last edited by hbghlyj at 2025-5-21 07:04△DEF是△ABC垂足三角形,
点I、J、G分别是△DEC、△BDF、△AEF内心,
直线IG、GJ、IJ交直线AB、AC、BC分别于H、L、M、N、P、Q.
求证 $\frac{C H}{L B} \cdot \frac{M B}{A N} \cdot \frac{P A}{C Q}=1$.
QQ图片20130629191614.jpg

84

Threads

2342

Posts

110K

Credits

Credits
13106

Show all posts

其妙 Posted 2013-7-7 21:28
回复 5# 其妙
怎么不做啦?被我说的吓住了?
不过我正准备再转载的他的新题,看了这道题都还没动,我就不准备转载他的原创第三道了

690

Threads

110K

Posts

910K

Credits

Credits
91263
QQ

Show all posts

kuing Posted 2014-4-3 23:03
补充一下当天粉丝群里的一段记录
地狱的死灵(4040*****) 15:59:31
这样还是要证那三点共线,
好像也不简单
kuing/fj/zhj 16:04:45
也可以不用证三点共线,先证 S_ATE=S_AGD(用 1/2absinC),然后就只要证 S_ATKE=S_AGKD,这样就可以直接用 AK*那两条高
其实证共线也不难
QQ截图20140404011143.gif
作 $CH \perp AB$ 于 $H$,设 $AG$ 交 $AH$ 于 $Q$,则
\[\tan \angle QBH=\frac{QH}{HB}=\frac{QH}{GJ}=\frac{AH}{AJ}=\frac{EI}{IB}=\tan \angle EBI,\]
故 $B$, $Q$, $E$ 三点共线,即 $BE$, $AG$, $CH$ 三线共点。

55

Threads

961

Posts

9992

Credits

Credits
9992

Show all posts

乌贼 Posted 2023-4-30 16:02
先证明$ CI\perp GJ $,再证$ LM\px AC $即可

55

Threads

961

Posts

9992

Credits

Credits
9992

Show all posts

乌贼 Posted 2023-4-30 17:10
Last edited by 乌贼 at 2023-4-30 18:13先证$ AG\perp JI $。
       211.png
      延长$ CT $交$ FJ $于$ K $,有\[ \angle KTJ=\angle KJT=\dfrac{1}{2}(\angle ABC+\angle ACB)\riff\angle TKJ=\angle BAC \]即$ AFKC $四点共圆。
     延长同理$ AT $交$ DJ $于$ R $,同理有$ ARDC $四点共圆,也就有$ AFKRDC $六点共圆。
    又\[ \angle IDC=\angle JDB=\dfrac{1}{2}\angle BAC=\dfrac{1}{2}\angle TKJ \]故$ IKJD $四点共圆,所以\[ \angle IJD=\angle IKD=\angle CAD \]加之\[ \angle ARJ=\angle ACD \]因此\[ \angle IJD+\angle ARJ=\angle CAD+\angle ACD=90\du  \]得证



再证$ LK\px AC $
       212.png
       由$ AG\perp JI $有\[ \angle TIJ=\angle MBJ\riff \triangle TJI\sim \triangle MJB\riff TJ\cdot JB=MJ\cdot JI \]同理,由$ CI\perp JG $得\[ TJ\cdot JB=LJ\cdot JG \]故\[ MJ\cdot JI=LJ\cdot JG\riff\triangle MJL\sim \triangle GJI\riff\angle MLJ=\angle GIJ=\dfrac{1}{2}(\angle ABC+\angle CAB) \]又\[ \angle JLC=\angle JBL+\angle LJB=\angle JBL+\angle TAB=\dfrac{1}{2}(\angle ABC+\angle CAB)\]所以\[ \angle MLB=180\du -\angle ABC-\angle CAB=\angle ACB \]即\[ LM\px AC \]同理有\[ PN\px BC \]\[ HQ\px AB \]即有\[ \dfrac{CH}{LB}\cdot \dfrac{MB}{AN}\cdot \dfrac{PA}{CQ}=\dfrac{CH}{CQ}\cdot \dfrac{MB}{LB}\cdot \dfrac{PA}{NA}=\dfrac{CB}{CA}\cdot \dfrac{BA}{BC}\cdot \dfrac{AC}{AB}=1 \]

3156

Threads

7935

Posts

610K

Credits

Credits
63672
QQ

Show all posts

hbghlyj Posted 2025-5-21 07:06

Mobile version|Untroubled Math Forum

2025-5-21 12:48 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit