Forgot password?
 Create new account
View 324|Reply 13

[几何] 圆内接梯形的面积

[Copy link]

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2023-8-7 21:19:42 |Read mode
点$P$在单位圆$O$内,$OP=\frac{1}{2}$,圆$O$的内接梯形$ABCD$的对角线交于点$P$,求梯形$ABCD$的面积的最大值. QQ图片20230807211802.png

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2023-8-7 21:56:08
Last edited by hbghlyj at 2023-8-8 22:32:00设$O(0,0)$, $P(0,\frac12)$, $A(\texttt{x1},\texttt{y1})$, $C(\texttt{x2},\texttt{y2})$, 直线$AC:y=kx+\frac12$
因为圆内接梯形一定是等腰,$A$与$B$、$C$与$D$关于$OP$对称。
梯形面积\[A(k)=(\texttt{x1} - \texttt{x2}) (\texttt{y1} - \texttt{y2})\]
  1. {{x1, y1}, {x2, y2}} = {x, y} /. Solve[{y == k x + 1/2, x^2 + y^2 == 1}, {x, y}];
  2. FullSimplify[(x1 - x2) (y1 - y2)]
Copy the Code

\[A(k)=\frac{k \left(4 k^2+3\right)}{\left(k^2+1\right)^2}\]
当$k=\frac{1}{2} \sqrt{3+\sqrt{57}\over2}$取最大值$\sqrt{\frac{399 \sqrt{57}-1413}{512}}$

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

 Author| 力工 Posted at 2023-8-8 20:13:58
hbghlyj 发表于 2023-8-7 21:56
设$O(0,0)$, $P(0,\frac12)$, $A(\texttt{x1},\texttt{y1})$, $C(\texttt{x2},\texttt{y2})$, 直线$AC:y=kx ...
强啊,机算了。基本都是解析法,不知有其它法没有。

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-8-8 21:40:13
hbghlyj 发表于 2023-8-8 21:28
一般情况还没有解决上面假设了关于OP对称
?圆内接梯形难道不是一定是等腰吗?还有不对称的吗?

Comment

哦对!我把它删掉。。  Posted at 2023-8-8 22:31

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2023-8-8 22:33:52
kuing 发表于 2023-8-8 21:40
?圆内接梯形难道不是一定是等腰吗?还有不对称的吗?

突然想到,若“圆内接梯形”改成“圆内接四边形”,还能求面积最大值吗

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-8-8 22:57:54
hbghlyj 发表于 2023-8-8 22:33
突然想到,若“圆内接梯形”改成“圆内接四边形”,还能求面积最大值吗 ...
让我想起了这帖:kuing.cjhb.site/forum.php?mod=viewthread&tid=5771 只不过那点在外面

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

 Author| 力工 Posted at 2023-8-18 21:09:54
Last edited by 力工 at 2023-8-19 11:53:00追加一个问题,求此圆对角线交于点$P$时的内接四边形的的最大面积

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2023-8-18 21:17:41
Last edited by isee at 2023-8-25 11:48:00
力工 发表于 2023-8-18 21:09
追加一个问题,求圆接接四边形的的最大面积
这就太平凡了,主楼图\[S=\frac 12 AC\cdot BD \sin APB\leqslant \frac 12\cdot 2r\cdot 2r \sin\frac\pi2,\;\cdots\]


哦,没认真看主楼中的 OP 是定长,请无视上面

Comment

如果不限对角线交点的位置,肯定是这样子做。  Posted at 2023-8-19 11:52
isee=freeMaths@知乎

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

 Author| 力工 Posted at 2023-8-19 22:46:39
需要引入多个量表示长度?

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2024-2-6 18:23:29
hbghlyj 发表于 2023-8-8 22:33
突然想到,若“圆内接梯形”改成“圆内接四边形”,还能求面积最大值吗 ...
今天我在 zhihu.com/question/642966529/answer/3389198481 证明了取最大值时一定是梯形并算出了一般表达式😉

手机版Mobile version|Leisure Math Forum

2025-4-21 01:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list