Forgot password?
 Create new account
View 139|Reply 2

[几何] 共焦抛物线形成的四边形的对角线长度相等。

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2024-11-11 05:12:01 |Read mode
c024710b[1].gif 共焦抛物线可以表示为$$
C(p):y^2+4 p(x-p)=0
$$
其中 $p\inR$.

如何证明共焦抛物线形成的四边形的对角线长度相等?
download (1).gif

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2024-11-11 06:17:26
两个正交的共焦抛物线可以表示为
$$
C(p):y^2+4 p(x-p)=0
$$

$$
C(-q):y^2-4 q(x+q)=0
$$
其中 $p,q>0$.

计算 $C(p)$ 和 $C(-q)$ 的交点,得到两个点:
$$\left(p-q,\pm2\sqrt{pq}\right)$$
取 $p_1,p_2,q_1,q_2>0$,
$$\begin{aligned}P_{11}&=\left(p_1-q_1,\pm2\sqrt{p_1q_1}\right),&P_{22}&=\left(p_2-q_2,\pm2\sqrt{p_2q_2}\right),\\[5mu]P_{12}&=\left(p_1-q_2,\pm2\sqrt{p_1q_2}\right),&P_{21}&=\left(p_2-q_1,\pm2\sqrt{p_2q_1}\right).\end{aligned}$$
计算四边形 $P_{11}P_{12}P_{22}P_{21}$ 的对角线:
$$|P_{11}P_{22}|^2=(p_1-p_2-q_1+q_2)^2+4(\sqrt{p_1q_1}-\sqrt{p_2q_2})^2$$
$$|P_{12}P_{21}|^2=(p_1-p_2+q_1-q_2)^2+4(\sqrt{p_1q_2}-\sqrt{p_2q_1})^2$$
所以 $|P_{11}P_{22}|^2=|P_{12}P_{21}|^2$.

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2024-11-11 06:30:02
hbghlyj 发表于 2024-11-10 22:17
所以 $|P_{11}P_{22}|^2=|P_{12}P_{21}|^2$.
可以验证$(p_1-p_2-q_1+q_2)^2+4(\sqrt{p_1q_1}-\sqrt{p_2q_2})^2=(p_1-p_2+q_1-q_2)^2+4(\sqrt{p_1q_2}-\sqrt{p_2q_1})^2$是恒等式

手机版Mobile version|Leisure Math Forum

2025-4-21 14:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list